

First we had JSONPath 2007 drawing inspiration from XPath. It is still is lurking around today with very limited capabilities.

The Problem here is, you can't *just* transform the data to say, output an Array with InstanceId and PrivateIpAddress.

Except your implementation has added functions – which is not part of the spec.

(Optional) Like JSONPath’s inability to reference parent objects or property names of matching items forces users to contort their data in all sorts of strange ways.

Then came along JMESPath which was created by James Saryerwinnie in February 2012.

It wan popularity by being picked up in AWS CLI 2013 *– where you probably know it from!*

Good news: JQ queries are very similar!

JQ also started 2012 written by Stephen Dolan. But compared to JMESPath, JQ *is* a [functional programming language](https://en.wikipedia.org/wiki/Jq_\(programming_language). And it uses JSON (indeed BISON) as underlying data type. You will see what that means when we begin with JQ pipelines.

And JQ is also a CLI and therefore quickly became part of many CLI toolings!

For instance, it was first bundled with the Anaconda data science platform and therefore became popular in the data science community.

It got a bit silent around.

But 2023 they got a new development team, cleaned up CI and bugs and released a new version.

Solve any problem that can be described and executed in an algorithmic form.

Mathematical formulas.

On endless Paper.

Used it with his Computer aka. his “The Turing Machine”

Hence the name.

https://github.com/makenowjust/bf.jq
https://github.com/makenowjust/bf.jq
https://github.com/wader/jqjq
https://github.com/wader/jqjq
https://itchyny.medium.com/json-formatter-written-in-jq-b716c281afd7
https://itchyny.medium.com/json-formatter-written-in-jq-b716c281afd7

Brainfuck is an esoteric programming language.

Games, CLI Utilities, …? *Can be done!*

Just that there would be no key input.

JQ takes input and gives output. Acts as filter.

(Optional)

For the versatile programers: JQ can act as [PEG](https://github.com/jqlang/jq/wiki/Parsing-Expression-Grammars) engine (“Parsing Expression Grammars”) itself. Even some [core functions are implemented in JQ itself](https://github.com/jqlang/jq/blob/6c035133e876c1ce5cbafe53164d0dc513c4e766/src/builtin.jq#L137). You can look it up on Wikipedia.

For all others: it's turing complete. meaning you could do all sorts of things.

\[^1]: it is Brainfuck, not Brainf*ck

https://github.com/makenowjust/bf.jq
https://github.com/makenowjust/bf.jq
https://github.com/wader/jqjq
https://github.com/wader/jqjq
https://itchyny.medium.com/json-formatter-written-in-jq-b716c281afd7
https://itchyny.medium.com/json-formatter-written-in-jq-b716c281afd7

JMESPath followers say they have a *spec* ensuring every implementations works the same. They also say: JQ is hard*er* to learn.

A "war" broke loose between JQ and JMESPath fanboys.

It is always a question of what you want to do with it.

Don't judge something by what you could do, but what you actually do with it! Does it fit your requirements?

In my opinion JQ continues where JMESPath ends and becomes hard to use.

And honestly I found JMESPath a bit odd indeed. Just looking at the string quote chars… 🙄

In JQ we can easily do complex transformations and while being a functional programming language itself.

(Next slide)

It is always a question of what you want to do with it.

Don't judge something by what you could do, but what you actually do with it! Does it fit your requirements?

In my opinion JQ continues where JMESPath ends and becomes hard to use.

And honestly I found JMESPath a bit odd indeed. Just looking at the string quote chars… 🙄

In JQ we can easily do complex transformations and while being a functional programming language itself.

(Next slide)

You probably needs some background with BISON or ANTLR.

https://en.wikipedia.org/wiki/Very_high-level_programming_language
https://en.wikipedia.org/wiki/Scope_(computer_programming)
https://en.wikipedia.org/wiki/Functional_programming_language
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Stream_(computing)
https://en.wikipedia.org/wiki/Icon_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)

Icon is another Very High Level Programming language (just like Ruby)

Haskell is *the* *functional* programming language

https://en.wikipedia.org/wiki/Very_high-level_programming_language
https://en.wikipedia.org/wiki/Scope_(computer_programming)
https://en.wikipedia.org/wiki/Functional_programming_language
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Stream_(computing)
https://en.wikipedia.org/wiki/Icon_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://github.com/jqlang/jq/wiki/Parsing-Expression-Grammars

BISON is a general-purpose parser generator

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Stream_(computing)
https://en.wikipedia.org/wiki/Icon_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://github.com/jqlang/jq/wiki/Parsing-Expression-Grammars
https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://jmespath.org/specification.html
https://github.com/antlr/antlr4

ANTLR is a parser generator.

https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://jmespath.org/specification.html
https://github.com/antlr/antlr4
https://arxiv.org/search/cs?searchtype=author&query=F%C3%A4rber,+M
https://arxiv.org/abs/2302.10576
https://arxiv.org/abs/2302.10576
https://github.com/01mf02/jaq
https://github.com/01mf02/jaq
https://github.com/wader/jqjq

ABNF (Augmented Backus-Naur Form)

ABNF is a notation used to define formal grammars for languages

ABNF is commonly used in Internet standards, such as in defining the syntax of protocols like HTTP, SIP, and email.

ABNF uses a set of rules to represent the structure of valid strings in the language. Each rule consists of a name, followed by an equals sign and a definition. The definitions are composed of sequences of terminal symbols, non-terminal symbols, and other constructs.

ANTLR (ANother Tool for Language Recognition)

ANTLR is a tool for generating parsers. It takes a grammar specification, often written in a format similar to EBNF (Extended Backus-Naur Form), and generates parser code in a target programming language.

ANTLR is commonly used for building compilers, interpreters, and language processors.

JQ

JQ doesn't have a spec. True. Bit it can itself act as PEG engine. And it has a Wiki page. So it's relevant!

JQ PEG is `LL(*)` "Left-to-Right, Leftmost derivation right parsing with infinite look ahead" where the parser dynamically adjusts its lookahead based on the input it encountered.

BISON is a general-purpose parser generator that is part of the GNU Compiler Collection (GCC). It is a tool used for generating parsers, specifically LALR (Look-Ahead Left-to-Right) parsers, which are a type of bottom-up parser.

JQ is [Tacit programming](https://en.wikipedia.org/wiki/Tacit_programming), also called **point-free style**, is a [programming paradigm](https://en.wikipedia.org/wiki/Programming_paradigm) in which function definitions do not identify the [arguments](https://en.wikipedia.org/wiki/Parameter_\(computer_science\)) (or "points") on which they operate. Instead the definitions merely [compose](https://en.wikipedia.org/wiki/Function_composition_\(computer_science\)) other functions, among which are [combinators](https://en.wikipedia.org/wiki/Combinatory_logic) that manipulate the arguments.

We know Tacit programming from Python and it's a great language (not only) because of that.

GOJQ

[Michael Färber](https://arxiv.org/search/cs?searchtype=author\&query=F%C3%A4rber,+M), author of [gojq](https://arxiv.org/abs/2302.10576) project, wrote [Denotational Semantics and a Fast Interpreter for jq](https://arxiv.org/abs/2302.10576) (<https://arxiv.org/abs/2302.10576>) as basis for his implementation.

> jq is a widely used tool that provides a programming language to manipulate JSON data. However, its semantics are currently only specified by its implementation, making it difficult to reason about its behaviour. To this end, I provide a syntax and denotational semantics for a subset of the jq language. In particular, the semantics provide a new way to interpret updates. I implement an extended version of the semantics in a novel interpreter for the jq language called jaq. Although jaq uses a significantly simpler approach to execute jq programs than jq, jaq is faster than jq on ten out of thirteen benchmarks. <https://arxiv.org/abs/2302.10576>

I haven't seen much forks or rewrites of JMESPAth just as people got interested in `JQ`

Thoughts

Anyway, good point: JMESPath reference implemtations are all hosted and tested by `github.com/jmespath` group.

JQ implementations do vary a little bit (tiny) but I think this soon will be thing of the pasts. I never had a problem with that.

Anyway? What about reference implementations? Unit tests? Bugs?

Everything has bugs. Deal with it!

https://arxiv.org/search/cs?searchtype=author&query=F%C3%A4rber,+M
https://arxiv.org/abs/2302.10576
https://arxiv.org/abs/2302.10576
https://github.com/01mf02/jaq
https://github.com/01mf02/jaq
https://github.com/wader/jqjq

The one use case most people use and know it for.

You can also use `less -R` as pager to keep colors! Or `jless` as better alternative for navigating JSON. You'll find it in the Appendix to this presentation.

The opposite of couese is also possible

Assume you have big JSON files like AWS CLI specs. You could use it to shrink the size of them, and even delete keys.

You can use it with whatever JSON service. Brr.. very could here in munich at the moment.

First the construction itself.

(Fragment)

Then you can use it with `curl`

We put a `jq` at the end of the pipe to validate the returned JSON.

First the construction itself.

(Fragment)

Then you can use it with `curl`

We put a `jq` at the end of the pipe to validate the returned JSON.

You can use builtin functions.

() Of course you could also use `python` or `node` here. But then: `awk` or even `perl` might be shorter?!

(Next Slide)

Python

```bash
$ echo "foo/bar" | python -c "import urllib.parse"$'\n'"print(urllib.parse.quote(input(), safe=''))"
```

Node

```bash
$ echo "foo/bar"| node 'require("querystring").stringify(process.stdin);console.log(result);'
```


Now negative lookahead are not necessarly a feature of `grep -P`

Another example with grep.

Let's grep for every ERROR a host has thrown in this error log *with embedded JSON!*

Select each line with text ERROR Grap

Or do some more advanced filtering.

Here we turn a log into JSON and filter for every hosts which starts with 'foo' or 'bar'

We did some transformation already. Here is another one. A useful helper function.

And our first function.

We did some transformation already. Here is another one. A useful helper function.

And our first function.

This one is probably more interesting for you.

But we use here a small wrapper to read YAML since JQ alone (yet) cannot do.

We don't have time for everything which makes jq great. Even not some syntactic sugar and general syntax.

If I sparked your interest check out the Manual! Read it, play with jq, and read the manaul it again!

https://jqlang.github.io/jq/manual/
https://jqplay.org/
https://github.com/jqlang/jq/wiki/Cookbook
https://github.com/jqlang/jq/wiki
https://github.com/jqlang/jq/wiki/FAQ
https://github.com/fadado/JBOL
https://rosettacode.org/wiki/Category:Jq

Line processing is a concept that comes from Unix and allows you great flexible in the shell is line processing.

`jq` also works line by line. Not only as CLI tool, but also internally ;)

We will look on how the pipelines work in the grammar section.

https://yaml.org/
https://json5.org/
https://github.com/timjansen/hanson
https://github.com/toml-lang/toml
https://github.com/hashicorp/hcl

One thing to keep in mind: YAML is not interchangeable with JSON!

If you think you can convert between YAML and JSON – it’s partly true.

YAML v1.2 is now 8 years old. But Python's pyaml still just support 1.1. :/

Anyway, YAML meanwhile knows *anchors, references, functions* like you know from GitLab CI

(Optional)

YAML v.1.1 `/` Slash: Therefore escaping is not superset, but YAML v1.2 rule 53 introduced better escaping

https://yaml.org/
https://json5.org/
https://github.com/timjansen/hanson
https://github.com/toml-lang/toml
https://github.com/hashicorp/hcl
https://kellyjonbrazil.github.io/jc/docs/

The good news is: when working with other CLI tools often you don't need to convert.

And then you could use jq custom function `toyaml` to write YAML. Or use a wrapper like `oq`.

https://kellyjonbrazil.github.io/jc/docs/

And therefore we could also use jq if clauses in CLI or BASH scripts

https://github.com/jqlang/jq/blob/master/src/builtin.jq

As I am not able to cover everything, please bookmark this slide! Especially the control structures.

https://github.com/jqlang/jq/blob/master/src/builtin.jq

Let's start with the JQ Pipeline. Similar to what you probably know from JMESPath.

* Parsing is left to right like in posix pipelines.

* `.` is the current value

* Variables are assigned by `<value> as $variable`

(Next slide)

For the language gurus

JQ PEG is `LL(*)` "Left-to-Right, Leftmost derivation right parsing with infinite look ahead" where the parser dynamically adjusts its lookahead based on the input it encounters. It can use as much lookahead as needed to resolve parsing conflicts and make accurate parsing decisions.

Here is an article (by Terence Parr, the author of [antlr](http://www.antlr.org/)) about `LL(*)` grammar analysis: [article](https://theantlrguy.atlassian.net/wiki/spaces/~admin/pages/524294/LL+grammar+analysis) with a nice example of what is `LL(*)` but not `LL(k)`, for any `k`.

Another good reference (and much more complete) is the ["Definitive ANTLR Reference"](http://www.pragprog.com/titles/tpantlr/the-definitive-antlr-reference), again by Terence Parr, and the original [journal article](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.881) describing how [antlr](http://www.antlr.org/) works \[[pdf\]](http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=667EBE7755564FF03F4EE7ED258B87DE?doi=10.1.1.57.881\&rep=rep1\&type=pdf).

Now this could happen accidentally *– and did happen to me –* especially when you further process the pipeline and begin to wonder why numbers are wrong.

Now this could happen accidentally *– and did happen to me –* especially when you further process the pipeline and begin to wonder why numbers are wrong.

How would we debug jq pipelines or filters?

JQ doesn't have an interactive debugger – yet. So we're stuck in try-catch loops and have to make our break

There are some JQ-REPLs

fq: You could also search for oher JQ REPLs, but I haven't found a really good ones. `fq -i` gives you a REPL but it doesn't support vars!)

https://github.com/wader/jq-dash-docset
https://github.com/wader/vscode-jq
https://github.com/wader/jq-lsp

https://github.com/wader/jq-dash-docset
https://github.com/wader/vscode-jq
https://github.com/wader/jq-lsp
https://github.com/wader/jqjq

https://github.com/wader/jq-dash-docset
https://github.com/wader/vscode-jq
https://github.com/wader/jq-lsp
https://github.com/wader/jqjq

https://github.com/jqlang/jq/wiki/Alternative-jq-implementations
https://github.com/itchyny/gojq
https://arxiv.org/pdf/2302.10576.pdf
https://arxiv.org/abs/2302.10576
https://github.com/jqlang/jq/wiki/Regarding-gojq

Technology Radar would say to `gojq` can be adopted right now!

Author of [gojq](https://arxiv.org/abs/2302.10576) project, [Michael Färber](https://arxiv.org/search/cs?searchtype=author\&query=F%C3%A4rber,+M) has written [Denotational Semantics and a Fast Interpreter for jq](https://arxiv.org/pdf/2302.10576.pdf) (<https://arxiv.org/abs/2302.10576>)

Which simplified means: JQ now has also a spec *– just to annoy the JMESPath folks ;)*

`gojq` uses RE2 (or [golang regexp](https://github.com/google/re2/wiki/Syntax)) instead of [oniguruma](https://github.com/kkos/oniguruma) which also very similar.

Currently I still do use plain `jq` and `oq`. But `gojq` is

https://github.com/itchyny/gojq
https://arxiv.org/pdf/2302.10576.pdf
https://arxiv.org/abs/2302.10576
https://github.com/jqlang/jq/wiki/Regarding-gojq
https://github.com/wader/fq

`fq` is like `gojq` on stereoids. It can read a lot of binary files and give you information on them as JSON

What's interesting for us is the serialization formats support.

https://github.com/wader/fq
https://github.com/Blacksmoke16/oq

Crystal does not have a (good) TOML library.

https://github.com/Blacksmoke16/oq

This can be seen as working with JSON – Part 2. I found this tools alongside JQ and my CLI workflow to be great.

And don't forget that JQ is a programming language. You can refactor.

BTW I really would be interested how Redis handles the problem with their JMESPath custom functions. If anyone has expierence on that or links to examples let me hear!

But, trust me. JQ is also not really suited for that kind of problem.

Just before you are writing awful JQ filters no one understands but you And you do only understand it just in the moment of working on it. And please add you have to debug from time to time, since you forget a case where an value could be suddenly null and it takes just hours.

So you were thinking of GraphQL? I was thinking about SQL which I find much easier to understand. And many do.

There is Postgres with great but first a bit strange looking JSON function amd grammer or CLI tools like CSVQ or even sqlite with JSON functions.

And it would be great if such a thing could take out the API to CSV layer completly.

https://jqlang.github.io/
https://jqlang.github.io/jq/download/
https://jqlang.github.io/jq/manual/
https://jqplay.org/
https://github.com/jqlang/jq/wiki/Cookbook
https://github.com/jqlang/jq/wiki
https://github.com/fiatjaf/awesome-jq
https://github.com/burningtree/awesome-json
https://github.com/jqlang/jq/wiki/FAQ
https://github.com/fadado/JBOL/tree/master
https://rosettacode.org/wiki/Category:Jq
https://github.com/jqlang/jq/wiki/Cookbook
https://gitlab.com/-/snippets/3620846/raw/main/.jq
https://gitlab.com/-/snippets/3620847/raw/main/jq.py

https://github.com/fadado/JBOL/tree/master
https://rosettacode.org/wiki/Category:Jq
https://github.com/jqlang/jq/wiki/Cookbook
https://gitlab.com/-/snippets/3620846/raw/main/.jq
https://gitlab.com/-/snippets/3620847/raw/main/jq.py
https://itchyny.medium.com/golang-implementation-of-jq-gojq-ad5bd46a4af2
https://thoughtbot.com/blog/jq-is-sed-for-json
https://medium.com/search?q=jq+-%22jquery%22
https://en.wikipedia.org/wiki/Jq_(programming_language)
https://github.com/jqlang/jq/wiki/jq-Language-Description

https://itchyny.medium.com/golang-implementation-of-jq-gojq-ad5bd46a4af2
https://thoughtbot.com/blog/jq-is-sed-for-json
https://medium.com/search?q=jq+-%22jquery%22
https://en.wikipedia.org/wiki/Jq_(programming_language)
https://github.com/jqlang/jq/wiki/jq-Language-Description
https://github.com/mwh/jqjs
https://github.com/eiiches/jackson-jq
https://github.com/arakelian/java-jq

https://en.wikipedia.org/wiki/Jq_(programming_language)
https://github.com/jqlang/jq/wiki/jq-Language-Description
https://github.com/mwh/jqjs
https://github.com/eiiches/jackson-jq
https://github.com/arakelian/java-jq
https://jmespath.org/specification.html
https://jmespath.org/libraries.html
https://github.com/jmespath/jp
https://github.com/jmespath/go-jmespath
https://docs.redis.com/latest/rdi/reference/jmespath-custom-functions/
https://github.com/kellyjonbrazil/jc
https://blog.kellybrazil.com/2020/08/30/parsing-command-output-in-ansible-with-jc/

https://github.com/mwh/jqjs
https://github.com/eiiches/jackson-jq
https://github.com/arakelian/java-jq
https://jmespath.org/specification.html
https://jmespath.org/libraries.html
https://github.com/jmespath/jp
https://github.com/jmespath/go-jmespath
https://docs.redis.com/latest/rdi/reference/jmespath-custom-functions/
https://github.com/kellyjonbrazil/jc
https://blog.kellybrazil.com/2020/08/30/parsing-command-output-in-ansible-with-jc/
https://github.com/tomnomnom/gron
https://github.com/xonixx/gron.awk
https://github.com/step-/JSON.awk/blob/master/doc/library.md#js_dot_path
https://github.com/bashtools/JSONPath.sh

https://github.com/tomnomnom/gron
https://github.com/xonixx/gron.awk
https://github.com/step-/JSON.awk/blob/master/doc/library.md#js_dot_path
https://github.com/bashtools/JSONPath.sh
https://github.com/TomWright/dasel
https://www.jsoniq.org/
https://datatracker.ietf.org/doc/id/draft-goessner-dispatch-jsonpath-00.html
https://github.com/json-path/JsonPath
https://jsonata.org/
https://dashjoin.medium.com/jq-vs-jsonata-language-and-tooling-compared-5f0f7acc778e
https://github.com/schibsted/jslt*
https://stedolan.github.io/jq/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://en.wikipedia.org/wiki/XQuery
https://jsonnet.org/
https://jsonpatch.com/
https://jsonpath.com/

https://github.com/xonixx/gron.awk
https://github.com/step-/JSON.awk/blob/master/doc/library.md#js_dot_path
https://github.com/bashtools/JSONPath.sh
https://github.com/TomWright/dasel
https://www.jsoniq.org/
https://datatracker.ietf.org/doc/id/draft-goessner-dispatch-jsonpath-00.html
https://github.com/json-path/JsonPath
https://jsonata.org/
https://dashjoin.medium.com/jq-vs-jsonata-language-and-tooling-compared-5f0f7acc778e
https://github.com/schibsted/jslt*
https://stedolan.github.io/jq/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://en.wikipedia.org/wiki/XQuery
https://jsonnet.org/
https://jsonpatch.com/
https://jsonpath.com/

If you learned JQ - the language - you can compare with with learning REGEX. But the skills don't apply to plaintext only but JSON instead ;)

JQ starts where JMESPath end with complex transformations. Which are hard to do in JMESPath.

But be aware to know where complex translations with JQ end (like when you are joining and merging data you first exported)

Then you probably want to use PostgreSQL for querying your JSON. And here I mean the API.

We're speaking about Infrastrucutre as SQL. But more on that next time.

