9-

Markus Geiger <mg@evolut|on515net>L
Protean Linux | Cloud | DevOps Engineer — ?{/' g .
a7,

s ¥

Press T‘ for help!

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

How Do We Query JSON?

A list of VM Instances

{
"Reservations": [
{
"Groups": [],
"Instances": [
{
"AmiLaunchIndex": 0,
"ImageId": "ami-7cB82c36a",
"Instanceld": "i-0d1bOb067617fe29c",
"InstanceType": "t2.medium",
"KeyName": "johndoe@macbook",
"PrivateDnsName": "1ip-10-1-4-67.ec2.internal
"PrivateIpAddress": "10.1.4.67",
"ProductCodes": [],
"PublicDnsName": "ec2-34-198-239-245.compute
"PublicIpAddress": "34.198.239.245",
1n Il . 1 1
b, {

"AmiLaunchIndex": 0,

"ImageId": "ami-7c82c36a",
"InstanceId": "i-0e52defe4897b1529",
"InstanceType": "tZ.micro",

= Let's get only IDs and Private IP addresses in a list!

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

JSONPath
Query expressions for JSON (based on “Xpath”)

S.Reservations[*].Instances[*].Instanceld
$.Reservations[x].Instances[*].PrivateIpAddress

OUTPUT

[
"i-0d1bOb067617fe29c",

"i-Pe52defe4897b1529"

]

[
"10.1.4.67c",

"10.1.4.75"

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

First we had JSONPath 2007 drawing inspiration from XPath. It is still is lurking around today with very limited capabilities.

The Problem here is, you can't *just* transform the data to say, output an Array with InstanceId and PrivateIpAddress.

Except your implementation has added functions – which is not part of the spec.

(Optional) Like JSONPath’s inability to reference parent objects or property names of matching items forces users to contort their data in all sorts of strange ways.

JMESPath

Fast querying and simple transformation

aws ec2 describe-instances \
—-—query 'Reservations[*].Instances[*]|[Instanceld,
= output text

OUTPUT

1-0d1b0b067617fe29¢c 10.1.4.67
i-0e52defe4897b1529 10.1.4.75

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Then came along JMESPath which was created by James Saryerwinnie in February 2012.

It wan popularity by being picked up in AWS CLI 2013 *– where you probably know it from!*

JQ

Looks similar?

aws ec2 describe-instances \
| jg '.Reservations[].Instances[]|[.Instanceld, .Pri

OUTPUT

i-0d1b0b067617fe29c 10.1.4.67
i-0e52defe4897b1529 10.1.4.75

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Good news: JQ queries are very similar!

JQ Does More...

JQ is a Programming Language

= fully-featured functional programming language

= uses JSON (indeed BISON) as underlying data type

JQ also started 2012 written by Stephen Dolan. But compared to JMESPath, JQ *is* a [functional programming language](https://en.wikipedia.org/wiki/Jq_\(programming_language). And it uses JSON (indeed BISON) as underlying data type. You will see what that means when we begin with JQ pipelines.

JQ is a Command Line Utility

= therefore can be part of any CLI toolchain

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

And JQ is also a CLI and therefore quickly became part of many CLI toolings!

For instance, it was first bundled with the Anaconda data science platform and therefore became popular in the data science community.

Finally, JQ is Back!

Version 1.7 was released this year.

It got a bit silent around.

But 2023 they got a new development team, cleaned up CI and bugs and released a new version.

JQ is Turing Complete

Definition

Turing Complete

Solve any problem that can be described and executed in an algorithmic
form.

= Imagine mathematical formulas on endless paper

= Alan Turing did similar things with his computers in the datacenter
“The Turing Machine” (math model) came into existence

Solve any problem that can be described and executed in an algorithmic form.

Mathematical formulas.

On endless Paper.

Used it with his Computer aka. his “The Turing Machine”

Hence the name.

https://github.com/makenowjust/bf.jq
https://github.com/makenowjust/bf.jq
https://github.com/wader/jqjq
https://github.com/wader/jqjq
https://itchyny.medium.com/json-formatter-written-in-jq-b716c281afd7
https://itchyny.medium.com/json-formatter-written-in-jq-b716c281afd7

=

Proof

ll

!!

= JMESPath implemented in JQ hasn't been done, but should be possi

= Games, CLI Utilities, ...? Can be done!

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Brainfuck is an esoteric programming language.

Games, CLI Utilities, …? *Can be done!*

Just that there would be no key input.

JQ takes input and gives output. Acts as filter.

(Optional)

For the versatile programers: JQ can act as [PEG](https://github.com/jqlang/jq/wiki/Parsing-Expression-Grammars) engine (“Parsing Expression Grammars”) itself. Even some [core functions are implemented in JQ itself](https://github.com/jqlang/jq/blob/6c035133e876c1ce5cbafe53164d0dc513c4e766/src/builtin.jq#L137). You can look it up on Wikipedia.

For all others: it's turing complete. meaning you could do all sorts of things.

\[^1]: it is Brainfuck, not Brainf*ck

https://github.com/makenowjust/bf.jq
https://github.com/makenowjust/bf.jq
https://github.com/wader/jqjq
https://github.com/wader/jqjq
https://itchyny.medium.com/json-formatter-written-in-jq-b716c281afd7
https://itchyny.medium.com/json-formatter-written-in-jq-b716c281afd7

JQ vs. JMESPath

JMESPath followers say they have a *spec* ensuring every implementations works the same. They also say: JQ is hard*er* to learn.

A "war" broke loose between JQ and JMESPath fanboys.

0

JQ is Hard to Learn?!

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

0

JMESPATH

aws ec2 describe-images \
—-—owners amazon —--region=us-east-1 \
—-—filters "Name=architecture,Values=arme4'" "Name=na
-—query 'sort_by((Images[*].[CreationDate,Imageld,Im
—-—output table

JQ

aws ec2 describe-images \
—-—owners amazon --region=us-east-1 \
—-—filters '"Name=architecture,Values=armec4" e=
\ jq —er '[.Images[]|[.CreationDate,.Imageld, .Image

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

e

- |t depends on what you do with JQ

Copyright @ 2026 by Markus Geiger licensed under Creative Commans Attribution-ShareAlike 4.0

It is always a question of what you want to do with it.

Don't judge something by what you could do, but what you actually do with it! Does it fit your requirements?

In my opinion JQ continues where JMESPath ends and becomes hard to use.

And honestly I found JMESPath a bit odd indeed. Just looking at the string quote chars… 🙄

In JQ we can easily do complex transformations and while being a functional programming language itself.

(Next slide)

e

- |t depends on what you do with JQ
- Does it fit your requirements?

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

It is always a question of what you want to do with it.

Don't judge something by what you could do, but what you actually do with it! Does it fit your requirements?

In my opinion JQ continues where JMESPath ends and becomes hard to use.

And honestly I found JMESPath a bit odd indeed. Just looking at the string quote chars… 🙄

In JQ we can easily do complex transformations and while being a functional programming language itself.

(Next slide)

i

Language Comparision

Now some slides for the compiler geeks ...

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

You probably needs some background with BISON or ANTLR.

https://en.wikipedia.org/wiki/Very_high-level_programming_language
https://en.wikipedia.org/wiki/Scope_(computer_programming)
https://en.wikipedia.org/wiki/Functional_programming_language
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Stream_(computing)
https://en.wikipedia.org/wiki/Icon_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)

i

JQ Language

ll

lllllllll

llllllllllllllllll

llllllllllllllllllllllllllll

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Icon is another Very High Level Programming language (just like Ruby)

Haskell is *the* *functional* programming language

https://en.wikipedia.org/wiki/Very_high-level_programming_language
https://en.wikipedia.org/wiki/Scope_(computer_programming)
https://en.wikipedia.org/wiki/Functional_programming_language
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Stream_(computing)
https://en.wikipedia.org/wiki/Icon_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://github.com/jqlang/jq/wiki/Parsing-Expression-Grammars

JQ "PEG" based on GNU BISON

ll

JQ shares the equivalence of the seven basic PEG operations shown in the following tab

PEG operation name PEG notation jq operation or def

Sequence el e2 el
Ordered choice el / e2
Zero-or-more ex ‘def star(E
One-or-more e+ ‘def pl
Optional e? def opti
And-predicate &e ‘def amp(E): . as $in

Not-predicate le def neg(E): select([E] == []1);

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

BISON is a general-purpose parser generator

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Stream_(computing)
https://en.wikipedia.org/wiki/Icon_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://github.com/jqlang/jq/wiki/Parsing-Expression-Grammars
https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://jmespath.org/specification.html
https://github.com/antlr/antlr4

JMESPath ABNF (Augmented Backus—Naur form)

"JO doesn t have a spec, we can guarantee that each implementation works the
same!"

expression = sub-expression / Tndex-expression J/ com
expression =/ or-expression / identifier

expression =/ and-expression / not-expression / paren—expri
expression =/ "*" / multi-select-list / multi-sel

expression =/ function-expression / pipe-express

expression =/ current-node

sub-expression Seemaresston " (identifier /
multi-select-listig
multi-select-hash
function-expression /

'r e)

llllllllllllllllllllll

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

ANTLR is a parser generator.

https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://jmespath.org/specification.html
https://github.com/antlr/antlr4
https://arxiv.org/search/cs?searchtype=author&query=F%C3%A4rber,+M
https://arxiv.org/abs/2302.10576
https://arxiv.org/abs/2302.10576
https://github.com/01mf02/jaq
https://github.com/01mf02/jaq
https://github.com/wader/jqjq

JAQ - even more formalism!

its behavior [...]

I provide a syntax and denotational semantics for a subset of the jq language. In partic
provide a new way to interpret updates.

I implement an extended version of the semantics in a novel interpreter for the j guage called jaq.

Although jaq uses a significantly simpler approach to execute jq programs than jq, jaq is faster than jq on

ten out of thirteen benchmarks.

= jagq “ Rust

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

ABNF (Augmented Backus-Naur Form)

ABNF is a notation used to define formal grammars for languages

ABNF is commonly used in Internet standards, such as in defining the syntax of protocols like HTTP, SIP, and email.

ABNF uses a set of rules to represent the structure of valid strings in the language. Each rule consists of a name, followed by an equals sign and a definition. The definitions are composed of sequences of terminal symbols, non-terminal symbols, and other constructs.

ANTLR (ANother Tool for Language Recognition)

ANTLR is a tool for generating parsers. It takes a grammar specification, often written in a format similar to EBNF (Extended Backus-Naur Form), and generates parser code in a target programming language.

ANTLR is commonly used for building compilers, interpreters, and language processors.

JQ

JQ doesn't have a spec. True. Bit it can itself act as PEG engine. And it has a Wiki page. So it's relevant!

JQ PEG is `LL(*)` "Left-to-Right, Leftmost derivation right parsing with infinite look ahead" where the parser dynamically adjusts its lookahead based on the input it encountered.

BISON is a general-purpose parser generator that is part of the GNU Compiler Collection (GCC). It is a tool used for generating parsers, specifically LALR (Look-Ahead Left-to-Right) parsers, which are a type of bottom-up parser.

JQ is [Tacit programming](https://en.wikipedia.org/wiki/Tacit_programming), also called **point-free style**, is a [programming paradigm](https://en.wikipedia.org/wiki/Programming_paradigm) in which function definitions do not identify the [arguments](https://en.wikipedia.org/wiki/Parameter_\(computer_science\)) (or "points") on which they operate. Instead the definitions merely [compose](https://en.wikipedia.org/wiki/Function_composition_\(computer_science\)) other functions, among which are [combinators](https://en.wikipedia.org/wiki/Combinatory_logic) that manipulate the arguments.

We know Tacit programming from Python and it's a great language (not only) because of that.

GOJQ

[Michael Färber](https://arxiv.org/search/cs?searchtype=author\&query=F%C3%A4rber,+M), author of [gojq](https://arxiv.org/abs/2302.10576) project, wrote [Denotational Semantics and a Fast Interpreter for jq](https://arxiv.org/abs/2302.10576) (<https://arxiv.org/abs/2302.10576>) as basis for his implementation.

> jq is a widely used tool that provides a programming language to manipulate JSON data. However, its semantics are currently only specified by its implementation, making it difficult to reason about its behaviour. To this end, I provide a syntax and denotational semantics for a subset of the jq language. In particular, the semantics provide a new way to interpret updates. I implement an extended version of the semantics in a novel interpreter for the jq language called jaq. Although jaq uses a significantly simpler approach to execute jq programs than jq, jaq is faster than jq on ten out of thirteen benchmarks. <https://arxiv.org/abs/2302.10576>

I haven't seen much forks or rewrites of JMESPAth just as people got interested in `JQ`

Thoughts

Anyway, good point: JMESPath reference implemtations are all hosted and tested by `github.com/jmespath` group.

JQ implementations do vary a little bit (tiny) but I think this soon will be thing of the pasts. I never had a problem with that.

Anyway? What about reference implementations? Unit tests? Bugs?

Everything has bugs. Deal with it!

https://arxiv.org/search/cs?searchtype=author&query=F%C3%A4rber,+M
https://arxiv.org/abs/2302.10576
https://arxiv.org/abs/2302.10576
https://github.com/01mf02/jaq
https://github.com/01mf02/jaq
https://github.com/wader/jqjq

JQ Usage Examples

o

Pretty Printing
INPUT

assume 1nput.json 1s pretty big
JQ will do a great and very fast job!

$ jq . input.json
$ cat input.json | jq

OUTPUT
1
Hyc}u" : [
'I‘la re" ,
1

"50" - Hprettyﬂ’
"big": "data:application/binary;IINOYXRLVHIhbnNpd
}
]
}

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

The one use case most people use and know it for.

You can also use `less -R` as pager to keep colors! Or `jless` as better alternative for navigating JSON. You'll find it in the Appendix to this presentation.

o0

Compacting
INPUT
i

Hyﬂuﬂ : [
{ "are": "such" },
{ 'I'Ia": "prEtty" }’
] bﬂyﬂ
]
}

SHELL

let's also delete .you.are
$ cat input | jq delete(.you.are)-c

OUTPUT

{Hyﬂu" : [{Ha" : Hprettyﬂ} ; "bﬂy"]}

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

The opposite of couese is also possible

Assume you have big JSON files like AWS CLI specs. You could use it to shrink the size of them, and even delete keys.

Getting values from REST APIs
Using cURL or any other CLI

$ curl -sSfL 'https://wttr.in/~munich?format=j1"' \
| Jg -r '.current_condition[0@].FeelsLikeC'

9

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

You can use it with whatever JSON service. Brr.. very could here in munich at the moment.

ol

Posting to REST APIs

You can also construct JSON!

note we don't need "" around key
$ jq -rnc -—arg foo foo '{a: {b: $foo}}'
_["aﬂ : _['Hb'” - ‘Hl'”}}

short version (you don't need to initialize b firs
$ jq -rnc .b.c.d=1
_["b" : '[”C” : {'I‘Id‘” - l}}}

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

First the construction itself.

(Fragment)

Then you can use it with `curl`

We put a `jq` at the end of the pipe to validate the returned JSON.

Posting to REST APIs
You can also construct JSON!

and you could use that in curl
MESSAGE="Th1s should get correctly encoded as 'JSON Str
SENDER="me"
curl —-fL \
-X POST -H "Content-Type: application/json'" \
-d "S$(jg -nc \
——arg "message" "$MESSAGE" \
—-—arg sender "SSENDER" '.sender=$SENDE
)1 A

https://www.timecapsules.space | jq -e

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

First the construction itself.

(Fragment)

Then you can use it with `curl`

We put a `jq` at the end of the pipe to validate the returned JSON.

=0

Escaping URLs

You can use builtin functions
$ 99 -Rr @Quri <<< "foo/bar/A00"
foo0%2Fbarf%2F%C3%84%C3%96%C3%9C

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

You can use builtin functions.

() Of course you could also use `python` or `node` here. But then: `awk` or even `perl` might be shorter?!

(Next Slide)

Python

```bash
$ echo "foo/bar" | python -c "import urllib.parse"$'\n'"print(urllib.parse.quote(input(), safe=''))"
```

Node

```bash
$ echo "foo/bar"| node 'require("querystring").stringify(process.stdin);console.log(result);'
```


=

Better Grep’

[*1]: using oniguruma Regex engine

INPUT

foo
bar
foobar
foobaz

CLI

$ cat input| jq —-Rre 'select(test("Afoo(?!bar)")
foo
foobaz

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Now negative lookahead are not necessarly a feature of `grep -P`

Extract AWS ARNSs from Terraform State

Extract all strings which begin with arn: or stuff L3
$ terraform pull state \
| Jg —-re '..|strings|select(test("*arn:|*[a-z]+-[a-T0

Another example with grep.

Stream Filter

INPUT

2023-11-11 11:11:11 ERROR unexpected error with response {"errorMessage": "with-some-json",

"errorCode": -1, sourceHost: "foo.bar.example.com"}
2023-11-11 11:11:11 ERROR unexpected error with response {"errorMessage": "with-some-json",

"errorCode": -1, sourceHost: "fazbaz.example.com"}

CLI

we turn this line into JSON and filter for every hosts which starts with 'foo

$ cat log | jg -rRs '
select(test("ERROR"))
|capture(" (2<ts>\\d{4}/\\d{2} /\\d{2}.+\\s\\d{2} :\\d{2} :\\d{2}) .+with resp

|select(.json?|fromjson|.sourceHost? |test(""(foo|bar)"))
|[.ts, .sourceHost ,.errorMessage]

OUTPUT

2023-11-11 11:11:11 foo.bar.example.com with-some-json

31 Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Let's grep for every ERROR a host has thrown in this error log *with embedded JSON!*

Select each line with text ERROR Grap

Or do some more advanced filtering.

Here we turn a log into JSON and filter for every hosts which starts with 'foo' or 'bar'

o

11646 IV LT IGAGEIWE D

INPUT

{
"Tags": [
{'I'!Key:" "fﬂﬂn, Hvalueﬂ: Hbar"}’
{"Key:" "agent", "Value": "smith"}
]
t

QUERY

.Tags = ((.Tags? // []1 | map({(.Key):.Value|tostri

OUTPUT

i rags's {"foo": "bar", "agent": "smith"} }

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

We did some transformation already. Here is another one. A useful helper function.

And our first function.

o

11646 IV LT IGAGEIWE D

INPUT

{
"Tags": [

{TIKEy:H ”fﬂﬂ", 'I“Ivalue": Hbar"}’
{"Key:" M"agent", "Value": "smith"}

]
}

REFACTOR

def aws_map_tags:

(.2 // []

.Tags=(.Tags|aws_map_tags)

| map({(.Key):.Value|tostring}) | add)

can be written shorter by
.Tags|=aws_map_tags

OUTPUT

{ "Tags": {"foo": "bar", "agent": "smith"} }

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

We did some transformation already. Here is another one. A useful helper function.

And our first function.

Syntax Checking embedded scripts in YAML

oq —-re —iyaml '.[].script' .gitlab-ci.yml | bash -n

This one is probably more interesting for you.

But we use here a small wrapper to read YAML since JQ alone (yet) cannot do.

More Functions? Implement yourself!

Markdown Table output for arrays

S jq -rnc '[{"a": 1}, {"b": 2}]|tabelize|md'
a b

e

A 1 =

s

def md:

nl.n + (.[9]|jﬁ'il1(" | "y) o+ |",
nl_n + (.[EJ]|map(”—”)|jo-in(”—|—”)) n ”_|”!
G100 " + G f3oin(" | ")) + ™ ")

Check out my [~/.jq] (https://gitlab.com/-/snippets/3620846/raw/main/.jq) library!

-

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

T ———

“l -

| Rosetta Code on JQ
............. oo T

llllllllllllllllllllllll

wﬂdbutmn-sharemme 4.0

32 Copyright @ 2026

We don't have time for everything which makes jq great. Even not some syntactic sugar and general syntax.

If I sparked your interest check out the Manual! Read it, play with jq, and read the manaul it again!

https://jqlang.github.io/jq/manual/
https://jqplay.org/
https://github.com/jqlang/jq/wiki/Cookbook
https://github.com/jqlang/jq/wiki
https://github.com/jqlang/jq/wiki/FAQ
https://github.com/fadado/JBOL
https://rosettacode.org/wiki/Category:Jq

Working with JSON

37

JSONL “Line Processing”
Unix Pipelines

$ printf "1\n2\n3" | cat

5

9
13

Do you do JSON Logging?

{level: "ERROR", message: "Out of pizza", source: "api"
{level: "ERROR", message: "Out of coke'", source: "api'"

my-api-client get-logs | jq 'select(.userId==" ”)|[?Eim

OUTPUT

2077-06-11 11:11:11 ERROR OQut of coke

= Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Line processing is a concept that comes from Unix and allows you great flexible in the shell is line processing.

`jq` also works line by line. Not only as CLI tool, but also internally ;)

We will look on how the pipelines work in the grammar section.

https://yaml.org/
https://json5.org/
https://github.com/timjansen/hanson
https://github.com/toml-lang/toml
https://github.com/hashicorp/hcl

JSON Supersets

By converting back to these original formats you will loose information!

= YAML current: 1.2.2 (2021-10-01))
= V1.1: cannot escape forward slash /

= V1.2: anchors, references, functions, ...
= JSONS HanSON JSON for Humans with comments
= TOML best of INI and JSON with semantics
= Hashicorp HCL - Human and Machine friendly Configuration language
= and others

One thing to keep in mind: YAML is not interchangeable with JSON!

If you think you can convert between YAML and JSON – it’s partly true.

YAML v1.2 is now 8 years old. But Python's pyaml still just support 1.1. :/

Anyway, YAML meanwhile knows *anchors, references, functions* like you know from GitLab CI

(Optional)

YAML v.1.1 `/` Slash: Therefore escaping is not superset, but YAML v1.2 rule 53 introduced better escaping

https://yaml.org/
https://json5.org/
https://github.com/timjansen/hanson
https://github.com/toml-lang/toml
https://github.com/hashicorp/hcl
https://kellyjonbrazil.github.io/jc/docs/

No Need to Convert to JSON!

Your CLI tools might be already support JSON output!

= kubectl -o0ojson or -ojsonpath
= docker —--format=json

= helm -0 json

And then you could use jg custom function toyaml to write YAML. Or use a wrapper.

The good news is: when working with other CLI tools often you don't need to convert.

And then you could use jq custom function `toyaml` to write YAML. Or use a wrapper like `oq`.

https://kellyjonbrazil.github.io/jc/docs/

CLI Options

But before we head to some grammer, let's look on some JQ —and not only CLI - options.

ol

—n null input

With null input you don't need to provide stdin

$ jq -n .foo.bar=12
{
"foo': {
Bpa: 12
}
}

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

o

-r RAW output

Default jg output
$ echo '{"foo":"bar"}' | jq .foo
Hba r-l'l

If it's a string, don't output quotes
$ echo '{"foo":"bar"}' | jq -r .foo
bar

For JSON 1it's not changing anything
$ echo '{"foo":"bar"}' | jq -r .
{ H-FOOH: Hbar-ﬂ}

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

o

-R RAW input

This creates the possibility to process plain text

$ printf 'foo\nbar' | jg -R .
" fOOH
" ba r-l'l

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

o

=s slurp

$ printf '{"line":1}\n{"line":2}' | jq -c
{"line":1}
{"line":2}

$ printf '"{"line":1}\n{"line":2}' | jq -sc
et T, " Line" 2}]

combine with raw input
$ printf 'foo\nbar' | jg -Rs .
"foo\nbar"

we need --slurp in order avaid line-by-line pr
BRI Footnbar® | jq —Rsc 'split("\n")'
I:H-FODH , Hba r-":l

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

o0

—e Exit on error

You can use JQ to evaluate JSON/JQ expressions

$ jq —ne 'true,false'; printf "exitcode=$?"
true

false

exitcode=1

$ jq —ne 'empty' &>/dev/null; printf "exitcode=$?"
exitcode=4

$ jg —ne '"'; printf "exitcode=$?"

null
exitcode=1

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

And therefore we could also use jq if clauses in CLI or BASH scripts

o0

Copyright @ 2026 by Markus Geiger licensed under Creative Commans Attribution-ShareAlike 4.0

o

Grammar

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

https://github.com/jqlang/jq/blob/master/src/builtin.jq

JQ Builtins

Sometime Implemented in JQ itself — list by bui L€ins or even overwrite!
htips.//github.com/jqlang/jq/blob/master/src/builtin. jq

Fﬁel

= Control Structures if then else try catch break while until foreach re

= Module System import include module modulemeta
= Functional Patterns all any map flatten add length reduce
= Path Functions (to modify big object) path paths getpath setpath
= Debug Functions
builtins stderr debug error, halt, halt_error .

= And a lot of other (mostly) useful functions!

As I am not able to cover everything, please bookmark this slide! Especially the control structures.

https://github.com/jqlang/jq/blob/master/src/builtin.jq

o

JQ Pipelines

we start with an array and iterate over it by '[]'

["Hel"] [] | debug
current value 1s now "Hel"

We assign "Limbo" to variable $who
|""Limbo" as $who|debug
current value 1s still "Hel"

We assign current valie + "lo" to variable $greet
| (.+=""10") as S$greet|debug
current value 1s '"Hel"

We define a new array with the current value 1is f
| [$greet, Swho] |debug
current value 1is now is ["Hello","Limbo'"]

And we pipe it into join function and add "!"

|j0iﬂ(", ")+"!"|debug
current value 1s now 1s "Hello Limbo!"

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Let's start with the JQ Pipeline. Similar to what you probably know from JMESPath.

* Parsing is left to right like in posix pipelines.

* `.` is the current value

* Variables are assigned by `<value> as $variable`

(Next slide)

For the language gurus

JQ PEG is `LL(*)` "Left-to-Right, Leftmost derivation right parsing with infinite look ahead" where the parser dynamically adjusts its lookahead based on the input it encounters. It can use as much lookahead as needed to resolve parsing conflicts and make accurate parsing decisions.

Here is an article (by Terence Parr, the author of [antlr](http://www.antlr.org/)) about `LL(*)` grammar analysis: [article](https://theantlrguy.atlassian.net/wiki/spaces/~admin/pages/524294/LL+grammar+analysis) with a nice example of what is `LL(*)` but not `LL(k)`, for any `k`.

Another good reference (and much more complete) is the ["Definitive ANTLR Reference"](http://www.pragprog.com/titles/tpantlr/the-definitive-antlr-reference), again by Terence Parr, and the original [journal article](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.881) describing how [antlr](http://www.antlr.org/) works \[[pdf\]](http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=667EBE7755564FF03F4EE7ED258B87DE?doi=10.1.1.57.881\&rep=rep1\&type=pdf).

o

Selection

Lets select only 2 from the input array which is [1,2,3]
SEIEECE 100 3] [] |if (.==2) thel@&=10 else . end'
20
3

Now let's replace our else case with empty as result
$ jq —ncr '"[1,2,3][]|1f (.==2) then . else empty en
2

empty is terminates the line.

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

select(condition)
Some behavior can also be accomplished by using select () function

$ jq —ncr '[1,2,3][]|select(.==2)"
2
Attention: Variable assignment

$ jq —nc '"foo'"|select(false) as $x|.'
returns nothing

$ jq —nc '"foo"|select(false) // true as $x|.'
" fﬂﬂ"

Since v1.7 we now also have "if>then>end" without else, but if if not apply it passes through
the valiue

$ jg-1.7 -ncr '[1,2,3][]|if (.==2) then .x=10 end'
1

20

3

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

22

Line Duplication
Object Duplication
One Object can become three objects!

#!/usr/bin/env -S sh -c 'exec jg -nc $0O'
[1,2,3] as $example|empty,

{message: "foo", num: S$dupe[]}

$3Jq -nc '|'

{"message" :"foo","num":1}
{"message" :"foo","num":2}
{"message" :"foo","num" :3}

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Now this could happen accidentally *– and did happen to me –* especially when you further process the pipeline and begin to wonder why numbers are wrong.

Line Duplication
Object Duplication
Let's assume you want to select keys for a row.

#!/usr/bin/env -S sh -c 'exec jg -rcnf $0O'
[
{line:"one",tags:[{key:"fo0"}]},
{line:"two",tags:[{key:"bar"},{key:"baz"}]}
] as Sexample|empty,

$Sexample[] |{line:.line, onetag: (.tags[].key)}

OUTPUT

{"line":"one","onetag":"foo"}
{"line":"two","onetag" :"bar"}
{"line":"two","onetag":"baz"}

Now this could happen by easily by accident!

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Now this could happen accidentally *– and did happen to me –* especially when you further process the pipeline and begin to wonder why numbers are wrong.

o

Elements in Arrays just will be inserted

Now what happens with arrays? The elements are just inserted:

#!/usr/bin/env -S sh -c 'exec jq -rcnf $0O'
[1,2,3] as Sexample|empty,

["foo","bar",$dupe[]]
[1,2,1,2,3]

We end up with a second row with suddenly 3 elements!

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Error Suppression / Optional Operator: ?

The ? operator, used as EXP?, is shorthand for try EXP.

define 1nput array wih three entries
[{}, true, {"a":1}] as $input|empty,

$input|[.[] | .a]

jq: error (at <unknown>): Cannot index boolean with str
exit status 5

Error Suppression / Optional Operator: ?

The ? operator, used as EXP?, is shorthand for try EXP.

define 1nput array wih three entries
[{}, true, {"a":1}] as $input|empty,

SSImpIUT | [, [[] .a?],

SEIREIT | [, [] try .a],

Sinput|[.[. try .a catch empty],
SSImpIUT | [, [[] .a? // null]

‘null,1]
‘null,1]
‘null,1]
‘null,null,1]
‘null,null,1]

Formats

These will always result in a string
= @json Serialize as JSON
= @text Convert to String
= @htm1l Escape for HTML

= @ur L Encode for use in URL
= @csv/@tsv Convert flat array into CSV

= ...0r write your own

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

(TODO) Recursing and Path Functions

. splits up complex data types and can be used to quickyl identify objects within a nested
structure

{
oo [
“hey“}
{that: {pattern: {'"'message'": '"yeah"}}},
{bar: {that: {"pattern": "not'"}}}

]
} as Sexample|empty,

Sexample|..|objects|select(.that.pattern?|objects)

{"that":{"pattern":{"message'":"yeah"}}}

ol

SQL*-like* Functions
INDEX

jg -nc '[{a:1},{a:2},{a:3}]|INDEX(.[];.a)"
fruygnsfngnag} ! LR EIPAEI N , n3na g3l

JOIN

jq -nc '([{id:1, foo:1},{1d:3, foo:3},{id:10, foo:2}
[Dar " : 1, "foo" : 1}
{"id":6,"bar":3}

{"id":10,"bar":2,"foo":2}

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Debugging

How would we debug jq pipelines or filters?

o

JQ doesn't have an interactive debugger - yet/

1f we hit n==2 then we exit with an error
$ jg -ncr '[1,2,3][]|debug(.)]|if (.==2) then error(.|@j

"DEBUG: ", 1’

"DEBUG: ", 2’

jq: error (at <unknown>): 2

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

JQ doesn't have an interactive debugger – yet. So we're stuck in try-catch loops and have to make our break

There are some JQ-REPLs

Debugging

= Use version 21.7 where error messages are much improved
or gojqg as alternative

= Use stderr or debugfor debug output!

= Useerror /1 which will exit with an error message

= Use halt_error /1 which will exit with specified error code
= Use if to check for certain conditions

= Use try catch around blocks which you think are erroneous

= Use emptyto end pipelines before errors happen
(especially if you get jg: error (at <unknown>):)

= Use a JQ REPL (no good ones out there)
fg can do with fg -1 but doesn't support vars!)

fq: You could also search for oher JQ REPLs, but I haven't found a really good ones. `fq -i` gives you a REPL but it doesn't support vars!)

Common Mistakes

= Use right number of arguments on undefined function: ?

= Use files for correct line numbers!

= Use parenthesis on unexpected token, syntax or otherwise strange error

$ jJg -rnc '""foo'"|try .+="bar" catch "moo"'
jg: error: syntax error, unexpected catch, expecting

g: end of file (Unix shell quoting issues?) at <top-1
g: 1 compile error

T

Now the parser will understand 1t correctly:
$ jq -rnc '"foo"|try (.+="bar") catch "moo"'
foobar

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

e

Own Debug Functions

If debug output["DEBUG:", <current-value>] doesn't suite you just overwri

def debug:
\(if (type=="string") then (@text|@json) else @jso

def debug(msgs):
(msgs | debug | empty), .;

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

https://github.com/wader/jq-dash-docset
https://github.com/wader/vscode-jq
https://github.com/wader/jq-lsp

oo

IDE Plugins

= For a convenient jg development experience:
= Jq-dash-docset

= vscoder]q
=19:Isp

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

https://github.com/wader/jq-dash-docset
https://github.com/wader/vscode-jq
https://github.com/wader/jq-lsp
https://github.com/wader/jqjq

Developing JQ (from JQJQ)

= Jjq —-n —-debug-dump-disasm '...' show |q byte code

= Jq -n --debug-trace=all '...' show jq byte code run trace

= Jjq —-n '{a: "hello"} | debug' 2> >(jg -R 'gsub("\u0O1lb\\[.*?
>&2) pretty print debug messages

| fromjson'

= GOJQ_DEBUG=1 go run -tags gojq_debug cmd/gojg/main.go . ' run gojq in debug

mode
=fgq -n '".a.b" | _query_fromstring' gojq parse tree for string

=fg -n '{...} | _query_tostring' jq expression string for gojg parse tree

Copyright @ 2026 by Markus Geiger licensed under Creative Commaons Attribution-ShareAlike 4.C

https://github.com/wader/jq-dash-docset
https://github.com/wader/vscode-jq
https://github.com/wader/jq-lsp
https://github.com/wader/jqjq

oo

Copyright @ 2026 by Markus Geiger licensed under Creative Commans Attribution-ShareAlike 4.0

oo

Copyright @ 2026 by Markus Geiger licensed under Creative Commans Attribution-ShareAlike 4.0

Notable JQ Implementations and
Wrappers

There are many alternative implementations, library and CLI wrappers adding format support for
YAML.

But just some of them are good.

Check Official Alternative jq implementations

https://github.com/jqlang/jq/wiki/Alternative-jq-implementations
https://github.com/itchyny/gojq
https://arxiv.org/pdf/2302.10576.pdf
https://arxiv.org/abs/2302.10576
https://github.com/jqlang/jq/wiki/Regarding-gojq

& goiq —adopt!

= Re-Implementation in pure golang,
= petter error messages and

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

Technology Radar would say to `gojq` can be adopted right now!

Author of [gojq](https://arxiv.org/abs/2302.10576) project, [Michael Färber](https://arxiv.org/search/cs?searchtype=author\&query=F%C3%A4rber,+M) has written [Denotational Semantics and a Fast Interpreter for jq](https://arxiv.org/pdf/2302.10576.pdf) (<https://arxiv.org/abs/2302.10576>)

Which simplified means: JQ now has also a spec *– just to annoy the JMESPath folks ;)*

`gojq` uses RE2 (or [golang regexp](https://github.com/google/re2/wiki/Syntax)) instead of [oniguruma](https://github.com/kkos/oniguruma) which also very similar.

Currently I still do use plain `jq` and `oq`. But `gojq` is

https://github.com/itchyny/gojq
https://arxiv.org/pdf/2302.10576.pdf
https://arxiv.org/abs/2302.10576
https://github.com/jqlang/jq/wiki/Regarding-gojq
https://github.com/wader/fq

= Based on gojg and understands itself as jq for a ton of binary formats (images, audio, archives,

o)

= Example: List files in a Docker Image

docker save repo/image \

| fq -r
[(.files[] | select(.name=="manifest.json").
[.files[] | select(.name==$1).data.files[®
add|[|
tostring

= Serialization formats: JSON, BSON, Bencode, YAML, XML, ASN1BER, Avro, CBOR, protobuf, ... (/)

`fq` is like `gojq` on stereoids. It can read a lot of binary files and give you information on them as JSON

What's interesting for us is the serialization formats support.

https://github.com/wader/fq
https://github.com/Blacksmoke16/oq

rrrrrrrrrrrrr

= |t's the best wrapper for original jg (also listed in jg wiki)

= |t handles YAML and XML - but not TOML (since it is written in Crystall)

= |t translates formats and retains meta ass much as possible (including YAML v1.2 with anchors)
= Respects jg CLI options correctly

Crystal does not have a (good) TOML library.

https://github.com/Blacksmoke16/oq

Supplementary Tooling

This can be seen as working with JSON – Part 2. I found this tools alongside JQ and my CLI workflow to be great.

Closing Thoughts

JQ as Query Language and joining JSONs

Let's LEFT JOIN two JSON files we got from an API.

jq —cnr |\
——slurpfile instances i1nstances.json \
——slurpfile 1mages images.json '
Sinstances[][]
| . Image=(
(
.Imageld as $imageld

| $images[][]
|select(.Id==$1mageld)
)
// null

)

{ "Id": 5, "ImageId": 1, '"Message": "foo'", "Image": { "
{ "Id": 5, "ImageId": 4, '"Message'": "foo", "Image": nul

You can. But just don't! It can easily get more complex.

And don't forget that JQ is a programming language. You can refactor.

o

Refactor

jq -nr \
—-slurpfile instances instances.json \
—-slurpfile images images.json '
def get_image($image_id):
(.ImageId as $imageld|$images[][]|select(.Id==%ima

$instances[][]]|.Image=get_image(.Imageld)

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

BTW I really would be interested how Redis handles the problem with their JMESPath custom functions. If anyone has expierence on that or links to examples let me hear!

But, trust me. JQ is also not really suited for that kind of problem.

Just before you are writing awful JQ filters no one understands but you And you do only understand it just in the moment of working on it. And please add you have to debug from time to time, since you forget a case where an value could be suddenly null and it takes just hours.

So you were thinking of GraphQL? I was thinking about SQL which I find much easier to understand. And many do.

| do think pure SQL is easier!

| do think SQL is easier to understand:

SELECT ins.x, img.x*
FROM 1instances.json 1ns
LEFT JOIN 1images.json 1mg ON 1ins.Imageld=1img.Id

There is Postgres with great but first a bit strange looking JSON function amd grammer or CLI tools like CSVQ or even sqlite with JSON functions.

And it would be great if such a thing could take out the API to CSV layer completly.

Next time: Infrastructure as SQL

With CoudQuery and Steampipe.

o

Resources
General

= Make sure you read the FAQ)!

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

https://jqlang.github.io/
https://jqlang.github.io/jq/download/
https://jqlang.github.io/jq/manual/
https://jqplay.org/
https://github.com/jqlang/jq/wiki/Cookbook
https://github.com/jqlang/jq/wiki
https://github.com/fiatjaf/awesome-jq
https://github.com/burningtree/awesome-json
https://github.com/jqlang/jq/wiki/FAQ
https://github.com/fadado/JBOL/tree/master
https://rosettacode.org/wiki/Category:Jq
https://github.com/jqlang/jq/wiki/Cookbook
https://gitlab.com/-/snippets/3620846/raw/main/.jq
https://gitlab.com/-/snippets/3620847/raw/main/jq.py

Libraries and Recipes

= JBOL is a collection of modules and tools for the JQ language.
= Rosetta Code on JQ
= Offical JQ Cookbook
= My ~/.Jq dotfile
= GRON
= JSON Objects to Tables / Markdown / CSV
= AWS Config / INI Reader
= AWS, K8s helpers

= OTher useful functions

= My Ansible JQ Fllter Plugin

https://github.com/fadado/JBOL/tree/master
https://rosettacode.org/wiki/Category:Jq
https://github.com/jqlang/jq/wiki/Cookbook
https://gitlab.com/-/snippets/3620846/raw/main/.jq
https://gitlab.com/-/snippets/3620847/raw/main/jq.py
https://itchyny.medium.com/golang-implementation-of-jq-gojq-ad5bd46a4af2
https://thoughtbot.com/blog/jq-is-sed-for-json
https://medium.com/search?q=jq+-%22jquery%22
https://en.wikipedia.org/wiki/Jq_(programming_language)
https://github.com/jqlang/jq/wiki/jq-Language-Description

I

Selected Articles

!!!

lll

lll

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

https://itchyny.medium.com/golang-implementation-of-jq-gojq-ad5bd46a4af2
https://thoughtbot.com/blog/jq-is-sed-for-json
https://medium.com/search?q=jq+-%22jquery%22
https://en.wikipedia.org/wiki/Jq_(programming_language)
https://github.com/jqlang/jq/wiki/jq-Language-Description
https://github.com/mwh/jqjs
https://github.com/eiiches/jackson-jq
https://github.com/arakelian/java-jq

oo

JQ Implementations

= JQ In JavaScript
= Jackson JQ pure Java JQ implementation

= Java Wrapper for JQ

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

https://en.wikipedia.org/wiki/Jq_(programming_language)
https://github.com/jqlang/jq/wiki/jq-Language-Description
https://github.com/mwh/jqjs
https://github.com/eiiches/jackson-jq
https://github.com/arakelian/java-jq
https://jmespath.org/specification.html
https://jmespath.org/libraries.html
https://github.com/jmespath/jp
https://github.com/jmespath/go-jmespath
https://docs.redis.com/latest/rdi/reference/jmespath-custom-functions/
https://github.com/kellyjonbrazil/jc
https://blog.kellybrazil.com/2020/08/30/parsing-command-output-in-ansible-with-jc/

JMESPath

= JMESPath Spec —now how faris a spec away from a manual?

= JMESPath Implementations and libraries

Copyright ® 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

https://github.com/mwh/jqjs
https://github.com/eiiches/jackson-jq
https://github.com/arakelian/java-jq
https://jmespath.org/specification.html
https://jmespath.org/libraries.html
https://github.com/jmespath/jp
https://github.com/jmespath/go-jmespath
https://docs.redis.com/latest/rdi/reference/jmespath-custom-functions/
https://github.com/kellyjonbrazil/jc
https://blog.kellybrazil.com/2020/08/30/parsing-command-output-in-ansible-with-jc/
https://github.com/tomnomnom/gron
https://github.com/xonixx/gron.awk
https://github.com/step-/JSON.awk/blob/master/doc/library.md#js_dot_path
https://github.com/bashtools/JSONPath.sh

o

Selected Tools

ll

= JSONPath.sh Pure JSONPath implementation in Bash for filtering, g and modifying JSON

Copyright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-ShareAlike 4.0

https://github.com/tomnomnom/gron
https://github.com/xonixx/gron.awk
https://github.com/step-/JSON.awk/blob/master/doc/library.md#js_dot_path
https://github.com/bashtools/JSONPath.sh
https://github.com/TomWright/dasel
https://www.jsoniq.org/
https://datatracker.ietf.org/doc/id/draft-goessner-dispatch-jsonpath-00.html
https://github.com/json-path/JsonPath
https://jsonata.org/
https://dashjoin.medium.com/jq-vs-jsonata-language-and-tooling-compared-5f0f7acc778e
https://github.com/schibsted/jslt*
https://stedolan.github.io/jq/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://en.wikipedia.org/wiki/XQuery
https://jsonnet.org/
https://jsonpatch.com/
https://jsonpath.com/

Other JSON Query Languages and Tools ()

— a new and slick tool for simple editing for every config file (TOML, INI, JSON, YAML)
— looks pretty promising for DevOps tooling!

https://github.com/xonixx/gron.awk
https://github.com/step-/JSON.awk/blob/master/doc/library.md#js_dot_path
https://github.com/bashtools/JSONPath.sh
https://github.com/TomWright/dasel
https://www.jsoniq.org/
https://datatracker.ietf.org/doc/id/draft-goessner-dispatch-jsonpath-00.html
https://github.com/json-path/JsonPath
https://jsonata.org/
https://dashjoin.medium.com/jq-vs-jsonata-language-and-tooling-compared-5f0f7acc778e
https://github.com/schibsted/jslt*
https://stedolan.github.io/jq/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://en.wikipedia.org/wiki/XQuery
https://jsonnet.org/
https://jsonpatch.com/
https://jsonpath.com/

g

Final Thoughts

Copyright @ 2026 by Markus Geiger licensed under Creative Commo hs Attiibation-ShareAlike 4.0

If you learned JQ - the language - you can compare with with learning REGEX. But the skills don't apply to plaintext only but JSON instead ;)

JQ starts where JMESPath end with complex transformations. Which are hard to do in JMESPath.

But be aware to know where complex translations with JQ end (like when you are joining and merging data you first exported)

Then you probably want to use PostgreSQL for querying your JSON. And here I mean the API.

We're speaking about Infrastrucutre as SQL. But more on that next time.

ik

Copyright @ 2026 by Markus Geiger licensed under Creative Commo hs Attiibation-ShareAlike 4.0

