BASH Scripting in Gitlab
CICD and Projects

Press | ? | for help!

‘a2

Chapter

BASH

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Defacto CLI Standard on *nix

GNU bash, version 5.2.15(1)-release (x86_64-pc-Llinux-gn
Copyright (C) 2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.

As Command Line Interface

S aws ec2 describe-instances --filters Name=iam-instanc
| jg -rce '.Reservations[].Instances[].Instancel
| tee /dev/tty \

| xargs aws ec2 terminate-instances --instance-i

= $ is the default SH prompt where BASH was derived from.
Therefore we still see it today in code blocks.

BASH is a Command-line interpretor and also scripting language.

CLI stands for command line interface of course.

BASH is default for many Linux, Unix and BSD system. Therefore we also use sometimes the `(wildcard)*nix` abbreviation.

Note: `$` (dollar sign) is the default SH PS1 prompt therefore we still see it today in examples.

`bash` prompts you by user@host:path

A Scripting Standard on *nix

As scripting language:
#! /usr/bin/env bash
set -eEuo pipefail

main() {
local color="%${1?color}"

if [["$color" =~ A(#?([a-fA-FO-9]{6}|[a-fA-FO-9]{3
printf '%s\n' "${BASH_REMATCH[1]}"

printf '%s\n' "error: $color 1is an invalid hex

else
return 1
f1
}
main "S@"

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

We are using parameter substitution for error messages, regular Expressions here.

BASH isn’t meant for Complex Problems!

= BASH lacks of data and control structures
= BASH ancestor sh even doesn't know arrays!
= BASH is slow and hard to learn!

BASH isn’t meant for complex problems!

BASH lacks of data and control structures like found in Python or other programming languages.

BASH ancestor SH even doesn’t know arrays. BASH only knows one-dimensional assoc arrays – and they are not nestable!

I guess for a lot of you writing Python more appealing than dealign with BASH.

When to avoid BASH?'

Performance matters?
— Use something other than shell!

More than 100 lines long or non-straightforward control flow?
— rewrite it in a more structured language now.

[*1]: according to Google Shell Style Guide

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Now these are very essential things to ask yourself.

I have seen a lot of BASH scritps that were later rewritten in Python or other languages.

The [Google Shell style guide](https://google.github.io/styleguide/shellguide.html) outlines:

* If performance matters, use something other than shell.
* If you are writing a script that is more than 100 lines long, or that uses non-straightforward control flow logic, you should rewrite it in a more structured language *now*.
* When assessing the complexity of your code \[…] consider whether the code is easily maintainable by people other than its author.
* And even more …

We will reference that style guide more often in this presentation.

https://google.github.io/styleguide/shellguide.html

Chapter

Gitlab Runners

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

We dig into a practical example where we uncover the inner working of a gitlab runner.

And we want to use our favorite scripting language: Python. NOT.

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Shell Election in a GitlabRunner Job

sh -¢

if [-x fusr/local/bin/bash]; then
exec [fusr/local/bin/bash

elif [-x /usr/bin/bash]; then
exec /usr/bin/bash

elif [-x /bin/bash]; then
exec /bin/bash

elif [-x fusr/local/bin/sh]; then
exec fusr/local/bin/sh

elif [-x /usr/bin/sh]; then
exec /fusr/bin/sh

elif [-x /bin/sh]; then
exec /bin/sh

elif [-x /busybox/sh]; then
exec /busybox/sh

else
echo shell not found
exit 1

f4
= exec does a process substitution

= The initial sh process is being replaced by the found shell binary.

Gitlab Runner selects a suitable shell which could be sh as well...

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

GitlabRunner first locates a shell which it wull use to execute your `script:` section.

It looks in different pathes for shells.

And could also stick to `sh` as well…

You’ll find exactly that in Gitlab Runner Golang code.

1o

Trivia

What does that script execution behavior mean for distroless or images without shelr?

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

They will fail because they require a shell!

And that’s exactly the reason why Gitlab defaults to `:debug` version of the `kaniko` image their documentation.

`:debug` has a shell (means a binary)

The release version is built as one golang binary.

Thus you could also just remove /bin/bash if you don't rely on it as last step in your Dockerfile.

That makes sense for security reasons. But probably things

https://github.com/GoogleContainerTools/kaniko

1o

Trivia

What does that script execution behavior mean for distroless or images without shelr?

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

They will fail because they require a shell!

And that’s exactly the reason why Gitlab defaults to `:debug` version of the `kaniko` image their documentation.

`:debug` has a shell (means a binary)

The release version is built as one golang binary.

Thus you could also just remove /bin/bash if you don't rely on it as last step in your Dockerfile.

That makes sense for security reasons. But probably things

https://github.com/GoogleContainerTools/kaniko

1o

Trivia

What does that script execution behavior mean for distroless or images without shelr?
ecause they require a shell!

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

They will fail because they require a shell!

And that’s exactly the reason why Gitlab defaults to `:debug` version of the `kaniko` image their documentation.

`:debug` has a shell (means a binary)

The release version is built as one golang binary.

Thus you could also just remove /bin/bash if you don't rely on it as last step in your Dockerfile.

That makes sense for security reasons. But probably things

https://github.com/GoogleContainerTools/kaniko

10

Trivia

What does that script execution behavior mean for distroless or images without shell?

They will fail because they require a shell!

Yes, you can remove /bin/ba{sh} for production if you don't need shell or that int

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

They will fail because they require a shell!

And that’s exactly the reason why Gitlab defaults to `:debug` version of the `kaniko` image their documentation.

`:debug` has a shell (means a binary)

The release version is built as one golang binary.

Thus you could also just remove /bin/bash if you don't rely on it as last step in your Dockerfile.

That makes sense for security reasons. But probably things

https://github.com/GoogleContainerTools/kaniko

Concenate Script Sections and Execute

Stored alike /scripts-35992738-4805186176/step_script:

#! /usr/bin/env bash
set -eo pipefail set +0 noclobber

EEeval 5\
export FF_CMD_DISABLE_DELAYED_ERROR_LEVEL_EXPANSION

.]

cd\\\\' "/builds/acme/users/markus.geiger/my—-projec
[]

echo S\\\\'\\A\\WAA\WAX1b[32;1mS echo "Hello World!"\\
echo "Hello World!"\\\\n'

exit 0O

= before_script:and script: sections are concenated and
= escaped into a string to be evaluated
= script path will be available as $@ in script

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

We have elected our shell. Now the runner has concatenated everything we had in our `before_script` and `script` section and enriched it with nyce "debug output" (the green lines you see in the job log)

And as you could see they put an `#!/usr/bin/env bash` even if `sh` is our elected shell.

It also has some BASH options set to immediately exit on failure. We look at them later in detail.

Now that while file is piped into the shell process. And job execution begins.

12

Takeaways

= Dependend on container image you either use SH or BASH

= script: is always executed by default shell options
set -eo pipefail set +o noclobber

= BA{SH} therefore acts as primary control flow
= In BASH we primarily work with command's

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

We'll look at the shell options in the part abpout debugging

Chapter

A Strange Language

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

14

Section

Shebang!

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

How do we execute commands?

Linux Kernel reads a magic byte sequence at the beginning of the file:

18

~e.g. 0x7f454c46 — ELF 64-bit LSB pie executable

the kernel.

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

The Linux kernel knows mainly two ways to execute a proces.

Alway, it reads a *magic byte sequence* at the beginning of the file.

For example: for a 64-bit AMD64 ELF (Linux .EXE) that is 0x7f454c46.

https://www.in-ulm.de/~mascheck/various/shebang/

e

Shebang!
= e.g. #!/bin/bash #!/bin/python #!/usr/bin/env bash

llllllllllllllllllllllll

Kernel finds x2321 (#!) and delegates to userspace interpreter

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

And then we have a little hack introduced to the kernel decades ago at Bell labs: If the kernel finds `0x2321` (shebang!) the following will be delegated to userspace executor: namely BASH or SH.

And that is the reason why you can treat your scipts as commands.

<https://www.in-ulm.de/~mascheck/various/shebang/>

https://www.in-ulm.de/~mascheck/various/shebang/

Where is your BASH located?

#!/usr/bin/env bash locates and executes bash depending on your PATH variable.

#! fusr/bin/env bash
set -eEuo pipefail

SELF="3${0}"
BASENAME="3${0##x% /}"

ROOT_PATH="S(realpath "${0%/*x}/..")"
source "SROOT_PATH/share/foo/lib.sh"

main "S@"

As seen in GitLab Runner'S *shell locator* it searches at several default locations for SH or BASH.

Script executor locations differ on different linux systems.

And therefore we have `/usr/bin/env` which is the default location of that tool in every distribution:

* It locates the command given as as argument (here `bash`)
* locates it according to your PATH environment variable
* and substitutes the current process with it

For the advanced people: Don’t add BASH options in shebang line since we do not only have different interpretors for BASH but also different version!

Where is your Python located?

Use #lusr/bin/env python3 and write portable python code
#! /usr/bin/env python

import sys
from foo dimport cli_main

if __name__ == '__main__":
sys.exit(cli_main())

Of course you can also use python by that way.

How do we want to Execute our Scripts?

21

Prepending Interpreter?

$ bash bin/myscript.sh

= Now some people use sh — not compatible with bash
= The "binary" can shall deceide what it needs to be executed!
= Therefore we have a shebang like #!/usr/bin/env {python,bash,..}"

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

So, where are we?

That's a pattern I often do see. Why is it bad?

The "binary" shall know what it needs to be executed!

And therefore we use the Shebang!

22

Better: Execute as Commands

relative to current/project directory

$ bin/myscript

if it's in the current directory

$./myscipt

using env you don't need to specify location
$ export PATH="SPWD/bin:$PATH"

$ myscript

= This is how commands are used in Linux!

= By using commands we can chain input and outputs and use pipes.

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Takeaways

= Always start your scripts with !#/usr/bin/env bash
(except you want to target the system'’s interpreter at /bin/bash)

= Make your script files executable by chmod +x
= Avoid "binaries" having a . sh extension!
= Use .sh only for libraries!

(Taken from primarly Google Shell Style Guide and other sources)

T

o=

SH, BASH and POSIX?

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

How do SH and BASH relate to each other?

BASH can execute SH script but SH cannot execute BASH:

= SH is POSIX.2 Standard
= BASH is Extended POSIX Standard

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

POSIX is about Pipes, how processes behave etc.

Let's shine light on it by some *forking* history

Little Shell History

sh

= 1979 first release of of the Bourne Shell
= 1989 rewrite as ash by Kenneth Almquist (Almquist Shell)

= 2002 ported to Debian as dash (DASH)
= 2006 Ubuntu's system sh now defaults to dash

bash
= 1989 v.99 released as better ash under GPLv1

= 2006 v4 released - license change to GPLv3

= 2019 v5 released — Apple changes macOS default shell BASHv3 to zsh

A If you are targeting older systems make sure you test with BASH v4!

It began(?) with Steven Bourne's SH at Bell Labs. That was also the first time the input command line got capabilities to execute script.

The ideas here influenced later the POSIX standard based on an SH fork by David Korn. Anyway, we concentrate on BASH and SH only.

We have also some interesting history bits on on Debian and Ubuntu to know.

But back to Bell Labs: Brian Fox began coding Bash on January 10, 1988 after Richard Stallman became dissatisfied with the lack of progress being made by a prior developer.

BASH can execute SH scripts but not the other way round. That will get important with containers and Gitlab CI.

So what we can read here or if you don't practise dev-production-parity:

* If you are targeting older systems make sure you test with BASH v4.
* Don't rely on collegues with macOS still having v3
* They could have still installed BASH v5 with homebrew and use that.

As some people think: Apple probably didn't like the license change.

Also note: bash has a BASH compat mode (shopt) against API breaks for older versions (compat32, compat40, compat44)

Missing BASH version releases:

* **1996** v2
* **2004** v3

BASH Licenses

* 0.99? to 1.05?: GPL-1
* 1.11? to 3.2: GPL-2
* Since 4.0: GPL-3

https://en.wikipedia.org/wiki/Bourne_shell
https://tldp.org/LDP/abs/html/bashver4.html
https://lists.gnu.org/archive/html/info-gnu/2019-01/msg00010.html

How does SH compare to BASH?

= No arrays and == signs

= No built-in Regular Expressions (BASH_REMATCH)

= No [[or source function keywords

= No local shopts (like pipefail) or declare keywords™
= No <<<'here strings'ors$'...'

= No substrings (${x/y/z}), parameter substition (${x:y:z}) or expansion

=» Bashism provides a full list and a guide to port BASH to SH

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

http://mywiki.wooledge.org/Bashism

28

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

o
Hi =]

On Container Shells

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://busybox.net/about.html

Alpine or Embedded Linux

= Uses dash (Debian ASH) but it's called ash and embedded into BusyBox
= It does not come with BASH except it was explicitly added

= bash can be installed as additional package

= but since Gitlab only locates sh but not ash we will on/y have SH in Alpine.

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

You can say most container images do have bash on board. Except Alpine.

(Questions or skip this slide now)

Common misconception: Just because `ash` behaves a lot like `BASH` it is NOT a lightweight BASH: In fact it `ash` has an `ASH_BASH_COMPAT` mode! And an`apk add bash` just adds around 700KB to your alpine image!

BusyBox combines tiny versions of many common UNIX utilities into a single small executable. It provides replacements for most of the utilities you usually find in GNU fileutils, shellutils, etc. which are symlinked to the binary (and by execting the symlink busybox knows what to execute by it's name)

https://busybox.net/about.html
https://gitlab.com/acme/ops/cicd-tests/-/tree/example/script-with-bash-in-alpine?ref_type=heads

Forcing BASH in Alpine Images

You can rebuild or use this Alpine BASH Workaround

alpine-default-sh:
image: alpine: latest
script:
- echo "SSHELL"
you are Limited to SH even 1f alpine has ASH!!!

alpine-w-ash:
image:
name: alpine:latest
=l g [o
- test -z "S{SHEBANG}" && export SHEBANG=ash && exec

now we have ash and can continue scripting
- echo "SSHELL"

alpine-w-bash:
image:
name: alpine:latest
script:
- test -z "S{SHEBANG}" && apk add bash && export SHEB

now we have real bash and can continue scripting
- echo "SSHELL"

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Luckily there is a workaround to enable BASH for Alpine ;)

https://busybox.net/about.html
https://gitlab.com/acme/ops/cicd-tests/-/tree/example/script-with-bash-in-alpine?ref_type=heads

Installing Alpine Linux from rootfs

we just got busybox. a good start to download alpine
busybox wget https://dl-cdn.alpinelinux.org/alpine/v3.1

| tar -C / -zxv ——exclude "./etc/hosts" --exclude "
let's add bash

/sbin/apk add bash
if you are interactive you could exec /bin/bash -il°

for gitlab we wanna do a process substitution
test -z "S{SHEBANG}" && apk add bash && export SHEBANG=

= This will install Alpine Linux from rootfs on top of a busybox image like gcr

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

r:debug

And another debug trick I just wanted to mention here.

Takeaways

= A Kernel Hack made it possible to run scripts as commands
= SH scripts are often run by dash or bash indeed
= POSIX is basically Korn Shelland modern sh

= BASH is "Extended POSIX" syntax
= Alpine Linux does not come with bash

= Gitlab could select sh for alpine based images (but we can work around)

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

* Kernel Hack made it possible to run scripts with a userspace interpreter in "modified environment" as command
* SH scripts are indeed run by `dash`` which is faster than `bash\`\`. But bash can also run on POSIX compaitible mode.
* POSIX is basically *Korn Shell* and modern *`sh`*
* BASH is “Extended POSIX” syntax
* Alpine Linux does not come with `bash` by default
* Gitlab could select `sh` for alpine based images (but we can work around)

YL

o=

Chapter

A Strange Language

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

BASH as Command Language

-'-‘ . I
o - .'.l . ..
- " - 239
‘e ¥ - s
o
-

Here you see the origin of Linux commands.

Once computers were driven by physical command cards.

The output was on a printer.

The input was, well… you see it in the picture.

If the command was successful it quit with SUCCESS.

Otherwise you would get an error code.

Later people typed commands into a terminal.

And still you do exactly that in BASH!

In BASH we have commands. And it will be also helpful to understand bash functions later primarly as “commands”.

Commands vs. Functions

Commands do have Input / Output / Process IDs

= think of them as command cards

Functions are used inside programming language runtimes

= think of them mathematically

A command is usually executed as one or more processes.

And like functions commands can also be chained together. Therefore we also have the POSIX standard that describes how it has to work and what to support.

Error Codes

Bash has reserved error codes for exiting a process

= 0 - successful termination (EX_OK) — also your BASH functions should return O on success!
= 1 - Catchall for general errors

= 2 - Misuse of shell builtins (according to Bash documentation)
= 126 - Command invoked cannot execute

= 127 - "command not found”

= 128 - Invalid argument to exit

= 128+n - Fatal error signal “n"

= 130 - Script terminated by Control-C

= 255\ % - Exit status out of range

The rest is on you or the comands you are using!

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

We don’t have exceptions in BASH.

https://tldp.org/LDP/abs/html/exitcodes.html

A POSIX Process

File Descriptor O File Descriptor 1 File Descriptor 2

Ciarmidard braa i Tt = rd Db 1F Cianrard Erem
atanoard St standard Lkt Standard Error

Pzaudoterminal

Preudoterminal Master

A POSIX process can be sen as synonym to Linux process.

A command is usually executed as one or more processes.

So, we have end up a process with an input, an output and antoher file descriptor connected as error output.

We don’t have WARNING or INFO or fancy Exception stuff. If you want logging output use Standard Error – and only that! And probably use JSONL as output options.

Or if you want to go non-standard ways you still could add custom file descriptors.

And then we have a terminal – I mean virtual terminal. We have kernel device called ptmx which is the pseudoterminal master. From there we spawn slave terminals. And the terminal is both an input and output device.

Did anyone ask 7erminal?

KEEPINGYOUR
TIMELINE SACRED

ADM-3A is not a computer!

It's a remote input and output device!

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

This is NOT a computer!

Remember: there were days that people had terminals at home that were connected to a computer in the computing center.

Here we see an [ADM-3A](https://de.wikipedia.org/wiki/ADM-3A) as seen in the Disney+ or Marvel series Loki.

At the beginning of their existance they could not do much more then entering text and just froze when they lost connection to the server. Therefore called “dumb terminals”.

Later control or escape sequences were introduced to do “advanced stuff” like cursor positioning, scrolling or clear screen and do other fancy stuff like color.

https://en.wikipedia.org/wiki/Computer_terminal#Dumb_terminals
https://www.youtube.com/watch?v=cRM7mUqLiws

You could still use a dumb terminal today!

S TERM=dumb less /etc/hosts
WARNING: terminal 1is not fully functional
Press RETURN to continue

TERM="xterm" first defined 256-color, resizing and a mouse cursor

= If you are interested in more: 8bit Guy — What are Dumb Terminals?

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://en.wikipedia.org/wiki/Computer_terminal#Dumb_terminals
https://www.youtube.com/watch?v=cRM7mUqLiws

A Process in the Terminal (detailed with symlinks)

Back to our process. We also have to add some symlinks attached to each process. We’ll be using that later.

* `/dev/stdin` → `/proc/self/fd/0`
* `/dev/stdout` → `/proc/self/fd/1`
* `/dev/stderr` → `/proc/self/fd/2`
* `/dev/tty`→ `/dev/pts/?`

Processes in a POSIX Pipe

$ echo foo | sed s/foo/bar/ > myresult.txt

fil

Here we replace the input foo with the string bar using sed(search and displace)
The output STDOUT becomes the input STDIN of the next command.
Note: STDERR is not piped to the next command.

The power of *nix is to being able to chain commands into a pipe – thus a chain of commands.

Important thing to note: STDERR is not piped thru!

44

STDERR is not piped thru!

first part: Output to both stdout and stderr

second part: Redirect to stderr to null

$ (echo foo >&1; echo bar >&2) | cat 2>/dev/null
bar

foo

first part: Output to both stdout and stderr

second part: Redirect to stdout to null

S (echo foo >&1; echo bar >&2) | cat 1>/dev/null
bar

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Another example: We use `cat` to putput stdin to stdout.

The parenthesis around the two `echo`s mean that we execute within a subshell , thus becoming the parenthesis a “command” on it’s own.

First example.:

1. We output `foo` to `stdout`, and `bar` to `stderr`.

2. `stderr` is printed out within the first command thus we see `bar` on the terminal

3. `bar` becomes `stdin` to `cat` hence we see `bar` on the terminal

4. …and we redirect the `stderr` of `cat` to `null` – which has no output – note we have seen `stderr` output of `bar` already

Second Example:

1. Basically the same
2. But we redirect the output of `stdout` on `cat` to null device thus we see only `foo` from `stderr`

|s there a way to catch STDERR of both?

#! /usr/bin/env bash

(echo foo >&1; echo bar >&2 | sed 's/foo/bar/g') > /tm

EXIT_CODE=$!

if "SEXIT_CODE" -ne 0 && grep -q '"TooManyRequests" /tmp
echo "Do something special on this error"

fi

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Why do I show this?

First, to clear up misconceptions.

Second, since checking error logs sometimes is the only way to react to certain errors. And you might use that in your Gitlab pipelines

Third, we’ve seen a bit more complex example: If the command here failed (means exit code un-equal zero) we check for the string “TooManyRequests” in it’s error output and could follow some retry logic. You may use similar in your scripts.

And forth: since I don’t have time to explain everything in this talk you can dissect this lines by…

Chapter

Debugging

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

a7

Section

Strict Mode

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Strict Mode

It's better to know errors before they happen:

(Il # "Gitlab Script-Mode"
set set -eo pipefail set +o noclobber

= —e exit on an error

= =u error on undefined variables (otherwise BASH takes them as empty)
= -E, -0 errtrace if you set an error trap it is inherited to subshells

= -0 pipefail *fail pipe if any command in pipe exits with <> @

= +0 noclobber allow overwriting of files by > redirectionoperator

If these options are not set, BASH will just continue running a script that had an error including a/l consequences!
It's also a good idea to use the first one in Gitlab script:!

opyrght @ 2026 by Markus Geiger licensed under Creative Commons Attribution-Sharedlike 4.0

It’s better to know errors before they happen. So you don't need to debug.

I always start my scripts using this preamble.

We do set BASH options her. So what do they mean?

(Read Slide)

Clobber: BASH default allows overwrite

For Adanced Users: Even there is the possibiltiy to put options into a shebang you shouldn’t since

* options won’t be executed when including scritps or calling with explictily with `bash myscript` in CLI.
* Also some options are version dependent.

NOTE: If these options are not set, BASH will just continue running a script that had an error including *all* consequences! Including removal of files or other destructive actions!

48

Don't just put set -ueEo pipefail on existing scripts unless you want pain!

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

30

Please mind the + to switch options “off"
= +0 ${option} or +x - switch "on”

= =0 activated an option! — switch "off”

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

The `-+` is purely historical. `-` was first to set options. Later something was needed to unset, hence `+` came along.

BASH Option: Pipefail

echo foo | grep bar | cat
- exit code 0O

4

set -o pipefail
echo foo | grep bar | cat
- exit code 1

L 4N

Note: sh doesn't have this option!

3l

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Let’s have a look on the effects of these options and the how to cure…

32

BASH Option: Exit on Error

set -e
rm -f nonexistent
exit script with code 1

1l 4 4n

4

rm -f nonexistent || true
exit code 0 continue script

1

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

BASH Option: Exit on Undefined Variable

set -u
echo "S{UNDEFINED}"
-» exit script with code 1

L 4N

$§ echo "S{UNDEFINED:-unset}"
- echos unset with exit code 0

usage in 1f 1f nonzero
if [[-n "${UNDEFINED:-}" 1]; then command; fi;

will exit with 1 since you should add || true or set
[[=n "S{UNDEFINED:-}" 1] && command

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Section

Linting

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

BASH Linting aka. “noexec” mode

Bash brings a built-in “linter™

$ bash -n myscript

You could also put it at the start of a script - including Gitlab Cl ;)

$ bash -n "$0" || exit 1

OUTPUT
/scripts-35992738-4805186176/step_script: line 66: synt

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Bash brings a built-in “linter”

The usage is straight-forward. Just add the `-n` option.

And you could also put it that at the start of a script *– including Gitlab CI ;)*

https://www.shellcheck.net/
https://github.com/koalaman/shellcheck
https://github.com/koalaman/shellcheck#installing
https://www.shellcheck.net/wiki/Ignore

26

Shellcheck

$ shellcheck myscript

In myscript line 6:

echo "hello world
A-- 5C1078 (warning): Did you forget to close thi

In /home/ctang/.local/bin/ec2-log line 62:
if [["SEC2_STATE_CURRENT" != SEC2_STATE_TARGET

e A SC2250 (style): Prefe
e — — — ——— —— A
e e A

Did you mean:
if [["S{EC2_STATE_CURRENT}" != ${EC2_STATE_TAR

lgnore errors by annotation:

shellcheck disable=5C2116,5C2086

Website: https://www.shellcheck.net/ (git [install|docs on ignore)

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Shellcheck is a well known and good tool for syntax checking and linting.

It throws a lot of WARNINGs BUT usually if it throws ERRORs you have ERRORs! Also it is very good at recognizing where parenthesis or quoting start/end errors.

You definatly should follow some if it’s sugestions since when you write SH scripts for systems they are run by varias SH implemetations and diffferent shell options.

Anyway, you can ignore errors by annotation or within CLI usage. Write a wrapper ro aais for it.

https://www.shellcheck.net/
https://github.com/koalaman/shellcheck
https://github.com/koalaman/shellcheck#installing
https://www.shellcheck.net/wiki/Ignore

Non-interactive Debugging

38

xtrace

Enable xtrace and enable function tracing

set -xo0 functrace

function foo {
echo "bar"

¥
-an n $@II

Disable xtrace here
set -x

OQUTPUT

+ foo

+ echo bar
bar

+ set -x

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

xtrace is is another SH option you can use. BASH also supports function tracing which you should enable.

a9

Using DEBUG trap

unset foo

Set the trap - 1t's active fromon this point

trap 'echo "- current foo=${foo:unset} - next $BASH_SUB
foo=1

let foo++

Unset the trap

trap - DEBUG

-» current foo= - next 26:foo=1
- current foo=1 - next 27:let foo++
- current foo=2 -» next 28:trap - DEBUG

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Then we could use a debug trap.

And as you see we could also add more code to it. Here we are tracing the variable `value`

Indeed we can also call a function here, but BASH variables may change…

https://github.com/DevelopersToolbox/trapper

B0

Convinience Solution: Trapper

curl -sSfL https://raw.githubusercontent.com/Developers
| install -m 0700 /dev/stdin -D $HOME/.local/share/

set -o functrace
source "SHOME/.local/share/trapper/trapper.sh"

Mirror on my Gitlab profile with —e functrace fix:

eval $(curl -sSfL 'https://gitlab.com/-/snippets/258846

Limt_f1lem]
[

. 18 Sreals
+

1istriles

tan lwre tn chlé-1.sh on Line 18

Becha "Global=50L034°

feeha "Enpnerted Gleha|=GF0PRORTED_GIIAAL™

d r;
Eill-u:l :E-ill-ulu i
e -

it [T B

Forert T tas lure 1n porest.sh an e 11
] GLOBAL="teting 1 I 3°
-] eiporl ENFATED_GLOBAL="T o exporled”
L

11 e Schild-1.sm

https://github.com/DevelopersToolbox/trapper

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Trapper doesn’t excatly show you each processed line but does show some very good error output.

I mirrored and `-o functrace` which is missing in the original version.

https://github.com/DevelopersToolbox/trapper

(Interactive) Debugging

This scripts can be used for local debugging. Partly also in CI.

"Simple"” Bash Debugger

Using bashdb - not to be mistaken by “official” bashdb https://bashdb.sourceforge.net/

curl -sSfL https://gitlab.com/-/snippets /2588469 /raw/ma
| install -m 0700 /dev/stdin -D $HOME/.local/share/
Then include after shebang or where debuggign shall begin and enable function tracing

set -o functrace
source "SHOME/.local/share/bashdb/bashdb.sh"

n=next s=step into r=run until C=continue p=print
(dbg) $?=0 /home/ctang/.local/bin/ec2-1log:473 [main] ma
/home/ctang/.local/bin/ec2-log: line 453: 1: 1instance-i

It has also a nyce output for non-interactive bash execution tracing.

One such thing is the `bashdb` script I found in a GIST.

There is a *somewhat official bash debugger* with the same name of `bashdb` but at the time of writing it does not support BASH 5.2 and BASH 5.1 is *just* in git. On sourcefourge – not GitHub. You can install it on Ubuntu20 as system package for it. Ubuntu22 doesn’t have it (since it has a newer BASH version).

It’s a bit tricky. Use that script here instead. It just traces code execution in your script.

I also mirrored that [gist](https://gist.github.com/rene-d/fd2d2c37dfc1371255818d73f7b5f1db/raw/bashdb.sh) on my Gitlab profile.

https://gist.github.com/rene-d/fd2d2c37dfc1371255818d73f7b5f1db/raw/bashdb.sh
https://bashdb.sourceforge.net/
https://marketplace.visualstudio.com/items?itemName=rogalmic.bash-debug

[]

(%]

VSCode or Jetbrains Plugin

Al File Edit Selection View Goo Deleg Terminal Help LesLsh - Lesling - Visual Sludic Cade - Insiders = O ®
ﬁl CEBUG B Eash-Cebug (samiplosk configuratian) LA - T | I testah X B esitsh m -
4 YARABLES 1 &!/bin/bash =

3 [pcho hells

4

% sgurce testl.sh
[

'

exit srmet

Jo
4
®
=

4 WATCH
FHDELERS HITPU DEHUL CONSCILE TEENIRAL 2 BashDebugConsale™ 4 M B 9~ O =
michalégnichal-VirtealBox: -/ /Docunents/src/testings cd . ; bash -c “ed A*shomes/michal/Docunents/srcftestingy™; while [[| -p Yo /impsu
sepde-Dash-debug-fito-10310%% |]; do sleap 8.25; done: \“Shone/michaly . wecede-insiders/extensions/ reqalnic . bash-debug-0.2. 4/bashdl
dir/bashdby™ --quiet --tty %"/inpsvscode-bash-cebug- fifo- 183184 --tty_in \“/tmpsvscoce-bash-debug- f1Te- 16318_1ny" --Library %" /hom

4 CALL STAOK asmichalf . vsoode - insiders/extensions/regalmic. bash-debug- 0,2, 4/bashdb diry” wrhanesnichal fDocumentsssrcstestingstest . shy -

bash: Line 1: 10383 Killesd tshanesnichal /. wscode- insiders/sztens ions/ rogalmic.bash-debug-4.2. 4sbashdb dirsbrshdb=
--guiet --tty "finpsvdcode-bash-cebeg-Tifo-10308° --1ty in */inpsvocode-bash-debug-TilTo-18318 in® --library "shome/nichaly . wacode-1
nElderssextansion 5-.-"I"l'.'l|;3 Lnic. bash -{IEDIJIJ -@.2 . 4/bashdb dir” -- "shomesnichalsocuments s s FE.-"tEE-tlng_."t-Ei-t s

michalenichal-virtualBox: - Docunents/src/tastings [T

o JP—
S @0A0 pRwheumpldcstiuraten lestnal ek Snsd UTRE LF Shelsret) &1

https://marketplace.visualstudio.com/items?itemName=rogalmic.bash-debug

Limitations and known problems
= S0 variable shows path to bashdb
= Older bash versions (4.0 - 4.2) are not tested, but might work™
= BASH_REMATCH gets overwritten when stepping through code

yright @ 2026 by Markus Geiger licensed under Creative Commons Attribution-Sharedlike 4.0

Of course you can use your IDE to debug.

The plugins are by the same author(s) of the the “Offical BashDB” in use. Therefore it uses “Offical BashDB”

* <https://bashdb.sourceforge.net/>
* <https://sourceforge.net/p/bashdb/code/ci/bash-5.1/tree/>

https://marketplace.visualstudio.com/items?itemName=rogalmic.bash-debug

Interactive Remote Terminal(s)

https://docs.gitlab.com/ee/ci/interactive_web_terminal/

Gitlab Interactive Web Terminal

It needs a session serverto be configured in the Gitlab Runner:

[session_server] | o interactive
session_timeout = 1800 PIMTTG) oD WIE0R WagereTustnew By 5 Administrater S e
actual server listen address T
listen_address = "0.0.0.0:8093" et vt o15Laborumer 11,9, oebere 691 cteaang | fieadadt
advertise_address boing el enestorse
advertise_address = "runnerid-subdomain.domain:8093" ::“wjj?&ip“,f bt e
= advertise_address is what the Gitlab API get's to connect to the P * @ interactive
runner. ’

= Add K8s Ingress and a NetworkPolicy to allow GitLab CIDR only.
= Probably it needs a sleep 3600 in your job script.

First you need a session server within the runner config.

It tells the Gitlab API where the Runner can be found. Then the GitlabAPI connects back with the job id after you clicked the debug button in the UI.

You need to setup an public available address to connect the runner to. The subdomain could be randomized of course.

Once it works you probably still need to add a `sleep` to yourto deb\` Don't use 3rd party Ingress-as-a-Service like ngrok if you cannot do the domain setup. You will risk a security exception.

I'm currently not sure on the status of the implementation of that feature on ACME's Gitlab-Runners-as-a-Service.

https://docs.gitlab.com/ee/ci/interactive_web_terminal/

Use sleep in job and kubectl exec

Note: You may run into a Gitlab Runner timeout!

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

You still could debug manually if you have access to the Kubernetes Cluster where the GitlabRunner is deployed.

First thing is to pause the execution. But after the Runners timeout is reached it will be terminated.

Then you identify the pod and connect to the job container.

&Y

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Takeaways

= |t's better to know errors before they happen: use strict mode!
set -ueko pipefail
= trapper is nice solution for debugging
= Interactive Web Terminals are a good Gitlab Solution but need to be setup

= You need to place sleep 3600 into you job script when debugging

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

i

Chapter

Addendum

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Now this is compiled from the VERY best sources with like 20+ years experience on BASH scripting.

Understanding BASH

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull

ExplainShell.com

explain

com
<@

I want to introduce you to explainshell.com *– which doesn’t use AI and uses Manpages to explain you a command.*

And of course you could ask AI which is often correct.

Aynway, I don’t think `destroy-the-world` is a fictional command on my system };)

https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://github.com/ibigio/shell-ai

lainShell.com Al based tools

. Thea command you've provided is a playful example thal demonstrales the use of exil staius
codas and kogecal oparators in Bash. Howenar, it's important bo nota that the command
“destroy-the-world” i5not a real command and is used henz for illustrative purpioses anby

Let's break down the command step by steq

has® [Capycode

[ocha foo =&l echo bar »R2) | cat 2=fdeav/null && destrow-the-world

“{echo foo 5BE1; ocko bar &2} - This i a subshell enclossd within parenihases |rside
thea subshall:

* “scho foo »kd°: The “sehe " command prirts “oa® to the standard autput (file
descriptor 1], “»&1- redirects the standard autput to file dascriptar 1, which is sffectisaly
WIThng ~foa” To the standand cutput

* “wehs bar »£2°: The “sehs " command prints “bar” 1o the standard error (file descriptor

2). "»&2" redirects the stardard oulput ta file descriptor 2, which is effectvely writng
"bar” to the siandard eror,
5o, within the subshell, "foo” is sent to standard autpuet, and "bar® is sent to standard error,

2 7] eat 2»pdowfnull": This par of the command pipes the outpot of the subshell o the
“oak -~ command, and then redirects standard ermor [0 - fdevinudl " 10 discand i,

* =1z This pips symbal connects the standard output of tha precading command {Ehe
sulbshell} to the standard ingut of the following command [cat "],

* ok The “cat” command reads from its standard ingut and oul puts the received
content to its standand output. n this casa, i will necahie oo™ from the subshells
standard autput,

* g fdes fnull ": This part redirects standard eror (file descriptar 2 to © fdew/aull”,
which effectively discards any error messages that might hawe been genersied by the
“ext ' command. Since: eak' docsn't write any error messages, this redinection has ne
practical affect in this context.

4 "&& destroy-the-world : The "E&" operalori=a logical AND opsratbar in Bash. 1U's used o
easule the command onthe gt sde of the sperator anly it the comenand an tha left side
sucoeeds {returmns an axil stabus af B
Ir this ciags, destroy-the-morld - is & ficlional command, and iv's wed e Lo regresenl a
catasirophis action that shodlkd only bs exacuted il averything before it succeeds. Sinca the

‘& * operator chacks the exit status of the preceding commands, and the command before

it{ [mcha foo »kl: eche bar »A2) | cat Dxfdevinull) dozsn't actually fail (it
produces “foo® as output and no anrars), tha ticticnal - destooy -the-world - Sommand wil
nat be emecuted

In summary, the command demonstrates how exil status codes and logical aperators work
in Bash. B uses iclional commands Lo illustrale the concepl of only executing a subssguent
cammand if the preceding cormmand succeeds. ITE impartant to undenstand that the

"dagtrey-tha-warld” command is not a real command and doesnt have any actual impact.

I want to introduce you to explainshell.com *– which doesn’t use AI and uses Manpages to explain you a command.*

And of course you could ask AI which is often correct.

Aynway, I don’t think `destroy-the-world` is a fictional command on my system };)

https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://github.com/ibigio/shell-ai

ShellAl

@0 ® iS5

desktop > q print I

https://github.com/ibigio/shell-ai

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

I don’t recommend simirarly named project ricklamers/shell-ai which is in python except you want to build upon. There you can just select commands that are instantly executed.

This golang Shell AI puts you into a REPL and once finished the command is copied to clipboard. Execution and modification is on yours.

BTW Also `q` is dumb command since there is another project [q](http://harelba.github.io/q/) which acts as wrapepr around SQLite to query CSVs.

https://github.com/ibigio/shell-ai

74

Section

Leaming Bash

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://google.github.io/styleguide/shell.xml

Shell Style Guide

Revision 2.02

Authored, revised and maintained by many Googlers.

Table of Contents

Section Contents
Background Which Shell to Use - When to use Shell

Shell Files and Interpreter , |
, File Extensions - SUID/SGID
Invocation

Environment STDOUT vs STDERR
Comments File Header - Function Comments - Implementation Comments - TODO Comments

. " Indentation - Line Length and Long Strings - Pipelines - Loops - Case statement - Variable expansion -
ormatting

Quoting

ShellCheck - Command Substitution - Test, [..] ,and [[.. 1] - Testing Strings - Wildcard Expansion
Features and Bugs |
of Filenames - Eval - Arrays - Pipes to While - Arithmetic

, _ Function Names - Variable Names - Constants and Environment Variable Names - Source Filenames -
Naming Conventions , | | | |
Read-only Variables - Use Local Variables - Function Location - main

Calling Commands Checking Return Values - Builtin Commands vs. External Commands

Conclusion

You probably know some bash. That's how it is done right voted by a mass of Google Developers (not necessary right)

https://google.github.io/styleguide/shell.xml
https://www.gnu.org/software/bash/manual/bash.html

Bash Reference Manual

Bash Reference Manual

Mext- Intraduction, Previous: {dir), Up: (dirl

Bash Features

This bext is a brief description of the features that are present in the Bash shell (version

.2, 19 Septembssr 2022). The Bash home page is hilp:/ wanuargfsaiwara'bashd

This is Edition 3.2, last updated 19 Sepltember 2022, of Tha GHU Bash Ralference Manual,
for eash, Mersion 3.2

Bash contains features that appear in other popular shells, and some features that only
appear in Bash. Some of the shells that Bash has bomowed concepts from are the Bourne
Shell (sr), the Kom Shell (keh), and the C-shell {csh and 1ts successar, tesh). The following
rmenu breaks the features up into categories, noting which features were inspired by

other shells and which are specinc to Bash.

Ihis manual Is meant as a brer Introduction ta features tound In Bash. The Bash manual

page should be used a5 the defnitive reference an shell behawvior,

= Web: https://www.gnu.org/software/bash/manual/bash.htmi

= Manpages: man bash man ${COMMAND}
= Built-ins: help ${COMMAND} or when using other shell bash -c¢ '"help ${COMMAND} '

Learn by practising is a good. But you also will make many mistakes. And it will be hard to gain the full understanding.

Even if you do just cross-reading – Read the Fucking Manual!

And still you ask a Large Language Model (LLM).

The BASH manual is avaialble via web or via manpages in your shell (something poeple seem not to use anymore)

BASH even has a builtin-command to print help on certain (built-in) commands.

Built-in commands? We‘ll have this in some moments.

https://www.gnu.org/software/bash/manual/bash.html

i

Cheat Sheets

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

78

Cheat.sh

$ curl cheat.sh/

B N, |]/ | "\
f | _ i .
R N (Y S| |/t

_/ (]

curl cheat.sh/ls
curl cht.sh/btrfs
curl cht.sh/tar~list
curl https://cht.sh

BEE \ \

S cht.sh btrfs
S cht.sh tar~1list

The only
Unified

communit
reposito

+-- queries with curl ---+ +- own optional client —-+ +

$ cht.sh go/f<tab><tab>
go/for go/func
$ cht.sh go/for

S cht.sh --shell
cht.sh> help

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Cheat sheet. Oldschool. Big project so far. Good for beginners.

https://en.wikipedia.org/wiki/Man_page
https://tldr.sh/
https://github.com/tldr-pages/tldr
https://github.com/dbrgn/tealdeer

TL:DR Pages

The tldr pages are a community effort to simplify the beloved man pages with practical examples.

S tldr bash
Bourne-Again SHell, an "sh -compatible command-line 1
See also: "zsh , histexpand (history expansion).
More information: <https://gnu.org/software/bash/>.

Start an interactive shell session:
bash

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Another big collection of examples. Examples are often missing in manpages.

https://en.wikipedia.org/wiki/Man_page
https://tldr.sh/
https://github.com/tldr-pages/tldr
https://github.com/dbrgn/tealdeer
https://www.commandlinefu.com/commands/browse
https://gitlab.com/-/snippets/2588469/raw/main/clfu

80

Command Line Fu

= CLL: https:/gitlab.com/-/snippets/2588469/raw/main/clfu

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

Back some years this was probably the biggest collection. It’s more about the art of doing something with one line CLI.

I’ll added you a script to query the page from CLI

https://www.commandlinefu.com/commands/browse
https://gitlab.com/-/snippets/2588469/raw/main/clfu

81

Section

Raw Links

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://www.gnu.org/software/bash/manual/bash.html
https://github.com/Idnan/bash-guide

Reference

- BASH Guide

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0 L

https://www.gnu.org/software/bash/manual/bash.html
https://github.com/Idnan/bash-guide
https://github.com/Idnan/bash-guide
https://github.com/jlevy/the-art-of-command-line
https://bash.cyberciti.biz/guide/Main_Page
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/LDP/abs/html/

83

Learning BASH

= A guide to learn BASH
= The Art of Command Line
= Linux Shell Scripting Tutorial (LSST) v2.0 by Vivek Gite (nixcraft)

= The Linux Documentation Project: Bash Programming - Intro/How-to

= The Linux Documentation Project: Advanced Bash Scripting Guide

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://www.gnu.org/software/bash/manual/bash.html
https://github.com/Idnan/bash-guide
https://github.com/Idnan/bash-guide
https://github.com/jlevy/the-art-of-command-line
https://bash.cyberciti.biz/guide/Main_Page
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/LDP/abs/html/
https://github.com/dylanaraps/pure-bash-bible
https://github.com/dylanaraps/pure-sh-bible

Efficient BASH (!)

= Pure BASH Bible

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://bash.cyberciti.biz/guide/Main_Page
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/LDP/abs/html/
https://github.com/dylanaraps/pure-bash-bible
https://github.com/dylanaraps/pure-sh-bible
https://google.github.io/styleguide/shell.xml
https://raimonster.com/scripting-field-guide/

83

Dos and Don'ts

= Shell Field Guide

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://github.com/dylanaraps/pure-bash-bible
https://github.com/dylanaraps/pure-sh-bible
https://google.github.io/styleguide/shell.xml
https://raimonster.com/scripting-field-guide/
https://github.com/alebcay/awesome-shell
https://github.com/awesome-lists/awesome-bash

B8

Awesome BASH

= Awesome Shell — A curated list of awesome command-line frameworks, toolkits, guides a
= Awesome BASH - A curated list of delightful Bash scripts and resources

Copyrght & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

. Inspired by awesome-php.

https://google.github.io/styleguide/shell.xml
https://raimonster.com/scripting-field-guide/
https://github.com/alebcay/awesome-shell
https://github.com/awesome-lists/awesome-bash
https://gist.github.com/fnky/458719343aabd01cfb17a3a4f7296797

87

Useful References

= Gist: ANSI Escape Sequences

Copyright & 2026 by Markus Geiger licensed under Creative Commons Attribution-Shareblike 4.0

https://github.com/alebcay/awesome-shell
https://github.com/awesome-lists/awesome-bash
https://gist.github.com/fnky/458719343aabd01cfb17a3a4f7296797
http://redsymbol.net/articles/unofficial-bash-strict-mode/

