

BASH is a Command-line interpretor and also scripting language.

CLI stands for command line interface of course.

BASH is default for many Linux, Unix and BSD system. Therefore we also use sometimes the `(wildcard)*nix` abbreviation.

Note: `$` (dollar sign) is the default SH PS1 prompt therefore we still see it today in examples.

`bash` prompts you by user@host:path

We are using parameter substitution for error messages, regular Expressions here.

BASH isn’t meant for complex problems!

BASH lacks of data and control structures like found in Python or other programming languages.

BASH ancestor SH even doesn’t know arrays. BASH only knows one-dimensional assoc arrays – and they are not nestable!

I guess for a lot of you writing Python more appealing than dealign with BASH.

Now these are very essential things to ask yourself.

I have seen a lot of BASH scritps that were later rewritten in Python or other languages.

The [Google Shell style guide](https://google.github.io/styleguide/shellguide.html) outlines:

* If performance matters, use something other than shell.
* If you are writing a script that is more than 100 lines long, or that uses non-straightforward control flow logic, you should rewrite it in a more structured language *now*.
* When assessing the complexity of your code \[…] consider whether the code is easily maintainable by people other than its author.
* And even more …

We will reference that style guide more often in this presentation.

https://google.github.io/styleguide/shellguide.html

We dig into a practical example where we uncover the inner working of a gitlab runner.

And we want to use our favorite scripting language: Python. NOT.

GitlabRunner first locates a shell which it wull use to execute your `script:` section.

It looks in different pathes for shells.

And could also stick to `sh` as well…

You’ll find exactly that in Gitlab Runner Golang code.

They will fail because they require a shell!

And that’s exactly the reason why Gitlab defaults to `:debug` version of the `kaniko` image their documentation.

`:debug` has a shell (means a binary)

The release version is built as one golang binary.

Thus you could also just remove /bin/bash if you don't rely on it as last step in your Dockerfile.

That makes sense for security reasons. But probably things

https://github.com/GoogleContainerTools/kaniko

They will fail because they require a shell!

And that’s exactly the reason why Gitlab defaults to `:debug` version of the `kaniko` image their documentation.

`:debug` has a shell (means a binary)

The release version is built as one golang binary.

Thus you could also just remove /bin/bash if you don't rely on it as last step in your Dockerfile.

That makes sense for security reasons. But probably things

https://github.com/GoogleContainerTools/kaniko

They will fail because they require a shell!

And that’s exactly the reason why Gitlab defaults to `:debug` version of the `kaniko` image their documentation.

`:debug` has a shell (means a binary)

The release version is built as one golang binary.

Thus you could also just remove /bin/bash if you don't rely on it as last step in your Dockerfile.

That makes sense for security reasons. But probably things

https://github.com/GoogleContainerTools/kaniko

They will fail because they require a shell!

And that’s exactly the reason why Gitlab defaults to `:debug` version of the `kaniko` image their documentation.

`:debug` has a shell (means a binary)

The release version is built as one golang binary.

Thus you could also just remove /bin/bash if you don't rely on it as last step in your Dockerfile.

That makes sense for security reasons. But probably things

https://github.com/GoogleContainerTools/kaniko

We have elected our shell. Now the runner has concatenated everything we had in our `before_script` and `script` section and enriched it with nyce "debug output" (the green lines you see in the job log)

And as you could see they put an `#!/usr/bin/env bash` even if `sh` is our elected shell.

It also has some BASH options set to immediately exit on failure. We look at them later in detail.

Now that while file is piped into the shell process. And job execution begins.

We'll look at the shell options in the part abpout debugging

The Linux kernel knows mainly two ways to execute a proces.

Alway, it reads a *magic byte sequence* at the beginning of the file.

For example: for a 64-bit AMD64 ELF (Linux .EXE) that is 0x7f454c46.

https://www.in-ulm.de/~mascheck/various/shebang/

And then we have a little hack introduced to the kernel decades ago at Bell labs: If the kernel finds `0x2321` (shebang!) the following will be delegated to userspace executor: namely BASH or SH.

And that is the reason why you can treat your scipts as commands.

<https://www.in-ulm.de/~mascheck/various/shebang/>

https://www.in-ulm.de/~mascheck/various/shebang/

As seen in GitLab Runner'S *shell locator* it searches at several default locations for SH or BASH.

Script executor locations differ on different linux systems.

And therefore we have `/usr/bin/env` which is the default location of that tool in every distribution:

* It locates the command given as as argument (here `bash`)
* locates it according to your PATH environment variable
* and substitutes the current process with it

For the advanced people: Don’t add BASH options in shebang line since we do not only have different interpretors for BASH but also different version!

Of course you can also use python by that way.

So, where are we?

That's a pattern I often do see. Why is it bad?

The "binary" shall know what it needs to be executed!

And therefore we use the Shebang!

POSIX is about Pipes, how processes behave etc.

Let's shine light on it by some *forking* history

It began(?) with Steven Bourne's SH at Bell Labs. That was also the first time the input command line got capabilities to execute script.

The ideas here influenced later the POSIX standard based on an SH fork by David Korn. Anyway, we concentrate on BASH and SH only.

We have also some interesting history bits on on Debian and Ubuntu to know.

But back to Bell Labs: Brian Fox began coding Bash on January 10, 1988 after Richard Stallman became dissatisfied with the lack of progress being made by a prior developer.

BASH can execute SH scripts but not the other way round. That will get important with containers and Gitlab CI.

So what we can read here or if you don't practise dev-production-parity:

* If you are targeting older systems make sure you test with BASH v4.
* Don't rely on collegues with macOS still having v3
* They could have still installed BASH v5 with homebrew and use that.

As some people think: Apple probably didn't like the license change.

Also note: bash has a BASH compat mode (shopt) against API breaks for older versions (compat32, compat40, compat44)

Missing BASH version releases:

* **1996** v2
* **2004** v3

BASH Licenses

* 0.99? to 1.05?: GPL-1
* 1.11? to 3.2: GPL-2
* Since 4.0: GPL-3

https://en.wikipedia.org/wiki/Bourne_shell
https://tldp.org/LDP/abs/html/bashver4.html
https://lists.gnu.org/archive/html/info-gnu/2019-01/msg00010.html

http://mywiki.wooledge.org/Bashism

https://busybox.net/about.html

You can say most container images do have bash on board. Except Alpine.

(Questions or skip this slide now)

Common misconception: Just because `ash` behaves a lot like `BASH` it is NOT a lightweight BASH: In fact it `ash` has an `ASH_BASH_COMPAT` mode! And an`apk add bash` just adds around 700KB to your alpine image!

BusyBox combines tiny versions of many common UNIX utilities into a single small executable. It provides replacements for most of the utilities you usually find in GNU fileutils, shellutils, etc. which are symlinked to the binary (and by execting the symlink busybox knows what to execute by it's name)

https://busybox.net/about.html
https://gitlab.com/acme/ops/cicd-tests/-/tree/example/script-with-bash-in-alpine?ref_type=heads

Luckily there is a workaround to enable BASH for Alpine ;)

https://busybox.net/about.html
https://gitlab.com/acme/ops/cicd-tests/-/tree/example/script-with-bash-in-alpine?ref_type=heads

And another debug trick I just wanted to mention here.

* Kernel Hack made it possible to run scripts with a userspace interpreter in "modified environment" as command
* SH scripts are indeed run by `dash`` which is faster than `bash\`\`. But bash can also run on POSIX compaitible mode.
* POSIX is basically *Korn Shell* and modern *`sh`*
* BASH is “Extended POSIX” syntax
* Alpine Linux does not come with `bash` by default
* Gitlab could select `sh` for alpine based images (but we can work around)

Here you see the origin of Linux commands.

Once computers were driven by physical command cards.

The output was on a printer.

The input was, well… you see it in the picture.

If the command was successful it quit with SUCCESS.

Otherwise you would get an error code.

Later people typed commands into a terminal.

And still you do exactly that in BASH!

In BASH we have commands. And it will be also helpful to understand bash functions later primarly as “commands”.

A command is usually executed as one or more processes.

And like functions commands can also be chained together. Therefore we also have the POSIX standard that describes how it has to work and what to support.

We don’t have exceptions in BASH.

https://tldp.org/LDP/abs/html/exitcodes.html

A POSIX process can be sen as synonym to Linux process.

A command is usually executed as one or more processes.

So, we have end up a process with an input, an output and antoher file descriptor connected as error output.

We don’t have WARNING or INFO or fancy Exception stuff. If you want logging output use Standard Error – and only that! And probably use JSONL as output options.

Or if you want to go non-standard ways you still could add custom file descriptors.

And then we have a terminal – I mean virtual terminal. We have kernel device called ptmx which is the pseudoterminal master. From there we spawn slave terminals. And the terminal is both an input and output device.

This is NOT a computer!

Remember: there were days that people had terminals at home that were connected to a computer in the computing center.

Here we see an [ADM-3A](https://de.wikipedia.org/wiki/ADM-3A) as seen in the Disney+ or Marvel series Loki.

At the beginning of their existance they could not do much more then entering text and just froze when they lost connection to the server. Therefore called “dumb terminals”.

Later control or escape sequences were introduced to do “advanced stuff” like cursor positioning, scrolling or clear screen and do other fancy stuff like color.

https://en.wikipedia.org/wiki/Computer_terminal#Dumb_terminals
https://www.youtube.com/watch?v=cRM7mUqLiws

https://en.wikipedia.org/wiki/Computer_terminal#Dumb_terminals
https://www.youtube.com/watch?v=cRM7mUqLiws

Back to our process. We also have to add some symlinks attached to each process. We’ll be using that later.

* `/dev/stdin` → `/proc/self/fd/0`
* `/dev/stdout` → `/proc/self/fd/1`
* `/dev/stderr` → `/proc/self/fd/2`
* `/dev/tty`→ `/dev/pts/?`

The power of *nix is to being able to chain commands into a pipe – thus a chain of commands.

Important thing to note: STDERR is not piped thru!

Another example: We use `cat` to putput stdin to stdout.

The parenthesis around the two `echo`s mean that we execute within a subshell , thus becoming the parenthesis a “command” on it’s own.

First example.:

1. We output `foo` to `stdout`, and `bar` to `stderr`.

2. `stderr` is printed out within the first command thus we see `bar` on the terminal

3. `bar` becomes `stdin` to `cat` hence we see `bar` on the terminal

4. …and we redirect the `stderr` of `cat` to `null` – which has no output – note we have seen `stderr` output of `bar` already

Second Example:

1. Basically the same
2. But we redirect the output of `stdout` on `cat` to null device thus we see only `foo` from `stderr`

Why do I show this?

First, to clear up misconceptions.

Second, since checking error logs sometimes is the only way to react to certain errors. And you might use that in your Gitlab pipelines

Third, we’ve seen a bit more complex example: If the command here failed (means exit code un-equal zero) we check for the string “TooManyRequests” in it’s error output and could follow some retry logic. You may use similar in your scripts.

And forth: since I don’t have time to explain everything in this talk you can dissect this lines by…

It’s better to know errors before they happen. So you don't need to debug.

I always start my scripts using this preamble.

We do set BASH options her. So what do they mean?

(Read Slide)

Clobber: BASH default allows overwrite

For Adanced Users: Even there is the possibiltiy to put options into a shebang you shouldn’t since

* options won’t be executed when including scritps or calling with explictily with `bash myscript` in CLI.
* Also some options are version dependent.

NOTE: If these options are not set, BASH will just continue running a script that had an error including *all* consequences! Including removal of files or other destructive actions!

The `-+` is purely historical. `-` was first to set options. Later something was needed to unset, hence `+` came along.

Let’s have a look on the effects of these options and the how to cure…

Bash brings a built-in “linter”

The usage is straight-forward. Just add the `-n` option.

And you could also put it that at the start of a script *– including Gitlab CI ;)*

https://www.shellcheck.net/
https://github.com/koalaman/shellcheck
https://github.com/koalaman/shellcheck#installing
https://www.shellcheck.net/wiki/Ignore

Shellcheck is a well known and good tool for syntax checking and linting.

It throws a lot of WARNINGs BUT usually if it throws ERRORs you have ERRORs! Also it is very good at recognizing where parenthesis or quoting start/end errors.

You definatly should follow some if it’s sugestions since when you write SH scripts for systems they are run by varias SH implemetations and diffferent shell options.

Anyway, you can ignore errors by annotation or within CLI usage. Write a wrapper ro aais for it.

https://www.shellcheck.net/
https://github.com/koalaman/shellcheck
https://github.com/koalaman/shellcheck#installing
https://www.shellcheck.net/wiki/Ignore

xtrace is is another SH option you can use. BASH also supports function tracing which you should enable.

Then we could use a debug trap.

And as you see we could also add more code to it. Here we are tracing the variable `value`

Indeed we can also call a function here, but BASH variables may change…

https://github.com/DevelopersToolbox/trapper

Trapper doesn’t excatly show you each processed line but does show some very good error output.

I mirrored and `-o functrace` which is missing in the original version.

https://github.com/DevelopersToolbox/trapper

This scripts can be used for local debugging. Partly also in CI.

One such thing is the `bashdb` script I found in a GIST.

There is a *somewhat official bash debugger* with the same name of `bashdb` but at the time of writing it does not support BASH 5.2 and BASH 5.1 is *just* in git. On sourcefourge – not GitHub. You can install it on Ubuntu20 as system package for it. Ubuntu22 doesn’t have it (since it has a newer BASH version).

It’s a bit tricky. Use that script here instead. It just traces code execution in your script.

I also mirrored that [gist](https://gist.github.com/rene-d/fd2d2c37dfc1371255818d73f7b5f1db/raw/bashdb.sh) on my Gitlab profile.

https://gist.github.com/rene-d/fd2d2c37dfc1371255818d73f7b5f1db/raw/bashdb.sh
https://bashdb.sourceforge.net/
https://marketplace.visualstudio.com/items?itemName=rogalmic.bash-debug

Of course you can use your IDE to debug.

The plugins are by the same author(s) of the the “Offical BashDB” in use. Therefore it uses “Offical BashDB”

* <https://bashdb.sourceforge.net/>
* <https://sourceforge.net/p/bashdb/code/ci/bash-5.1/tree/>

https://marketplace.visualstudio.com/items?itemName=rogalmic.bash-debug

https://docs.gitlab.com/ee/ci/interactive_web_terminal/

First you need a session server within the runner config.

It tells the Gitlab API where the Runner can be found. Then the GitlabAPI connects back with the job id after you clicked the debug button in the UI.

You need to setup an public available address to connect the runner to. The subdomain could be randomized of course.

Once it works you probably still need to add a `sleep` to yourto deb\` Don't use 3rd party Ingress-as-a-Service like ngrok if you cannot do the domain setup. You will risk a security exception.

I'm currently not sure on the status of the implementation of that feature on ACME's Gitlab-Runners-as-a-Service.

https://docs.gitlab.com/ee/ci/interactive_web_terminal/

You still could debug manually if you have access to the Kubernetes Cluster where the GitlabRunner is deployed.

First thing is to pause the execution. But after the Runners timeout is reached it will be terminated.

Then you identify the pod and connect to the job container.

Now this is compiled from the VERY best sources with like 20+ years experience on BASH scripting.

https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull

I want to introduce you to explainshell.com *– which doesn’t use AI and uses Manpages to explain you a command.*

And of course you could ask AI which is often correct.

Aynway, I don’t think `destroy-the-world` is a fictional command on my system };)

https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://github.com/ibigio/shell-ai

I want to introduce you to explainshell.com *– which doesn’t use AI and uses Manpages to explain you a command.*

And of course you could ask AI which is often correct.

Aynway, I don’t think `destroy-the-world` is a fictional command on my system };)

https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://explainshell.com/explain?cmd=%28echo+foo+%3E%261%3B+echo+bar+%3E%262%29+%7C+cat+2%3E%2Fdev%2Fnull
https://github.com/ibigio/shell-ai

I don’t recommend simirarly named project ricklamers/shell-ai which is in python except you want to build upon. There you can just select commands that are instantly executed.

This golang Shell AI puts you into a REPL and once finished the command is copied to clipboard. Execution and modification is on yours.

BTW Also `q` is dumb command since there is another project [q](http://harelba.github.io/q/) which acts as wrapepr around SQLite to query CSVs.

https://github.com/ibigio/shell-ai

https://google.github.io/styleguide/shell.xml

You probably know some bash. That's how it is done right voted by a mass of Google Developers (not necessary right)

https://google.github.io/styleguide/shell.xml
https://www.gnu.org/software/bash/manual/bash.html

Learn by practising is a good. But you also will make many mistakes. And it will be hard to gain the full understanding.

Even if you do just cross-reading – Read the Fucking Manual!

And still you ask a Large Language Model (LLM).

The BASH manual is avaialble via web or via manpages in your shell (something poeple seem not to use anymore)

BASH even has a builtin-command to print help on certain (built-in) commands.

Built-in commands? We‘ll have this in some moments.

https://www.gnu.org/software/bash/manual/bash.html

Cheat sheet. Oldschool. Big project so far. Good for beginners.

https://en.wikipedia.org/wiki/Man_page
https://tldr.sh/
https://github.com/tldr-pages/tldr
https://github.com/dbrgn/tealdeer

Another big collection of examples. Examples are often missing in manpages.

https://en.wikipedia.org/wiki/Man_page
https://tldr.sh/
https://github.com/tldr-pages/tldr
https://github.com/dbrgn/tealdeer
https://www.commandlinefu.com/commands/browse
https://gitlab.com/-/snippets/2588469/raw/main/clfu

Back some years this was probably the biggest collection. It’s more about the art of doing something with one line CLI.

I’ll added you a script to query the page from CLI

https://www.commandlinefu.com/commands/browse
https://gitlab.com/-/snippets/2588469/raw/main/clfu

https://www.gnu.org/software/bash/manual/bash.html
https://github.com/Idnan/bash-guide

https://www.gnu.org/software/bash/manual/bash.html
https://github.com/Idnan/bash-guide
https://github.com/Idnan/bash-guide
https://github.com/jlevy/the-art-of-command-line
https://bash.cyberciti.biz/guide/Main_Page
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/LDP/abs/html/

https://www.gnu.org/software/bash/manual/bash.html
https://github.com/Idnan/bash-guide
https://github.com/Idnan/bash-guide
https://github.com/jlevy/the-art-of-command-line
https://bash.cyberciti.biz/guide/Main_Page
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/LDP/abs/html/
https://github.com/dylanaraps/pure-bash-bible
https://github.com/dylanaraps/pure-sh-bible

https://bash.cyberciti.biz/guide/Main_Page
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/LDP/abs/html/
https://github.com/dylanaraps/pure-bash-bible
https://github.com/dylanaraps/pure-sh-bible
https://google.github.io/styleguide/shell.xml
https://raimonster.com/scripting-field-guide/

https://github.com/dylanaraps/pure-bash-bible
https://github.com/dylanaraps/pure-sh-bible
https://google.github.io/styleguide/shell.xml
https://raimonster.com/scripting-field-guide/
https://github.com/alebcay/awesome-shell
https://github.com/awesome-lists/awesome-bash

https://google.github.io/styleguide/shell.xml
https://raimonster.com/scripting-field-guide/
https://github.com/alebcay/awesome-shell
https://github.com/awesome-lists/awesome-bash
https://gist.github.com/fnky/458719343aabd01cfb17a3a4f7296797

https://github.com/alebcay/awesome-shell
https://github.com/awesome-lists/awesome-bash
https://gist.github.com/fnky/458719343aabd01cfb17a3a4f7296797
http://redsymbol.net/articles/unofficial-bash-strict-mode/

